【題目】新冠疫情期間,某校開展線上教學(xué),有錄播直播兩種教學(xué)方式供學(xué)生選擇其中一種.為分析該校學(xué)生線上學(xué)習(xí)情況,在接受這兩種教學(xué)方式的學(xué)生中各隨機抽取40人調(diào)查學(xué)習(xí)參與度,數(shù)據(jù)整理結(jié)果如下表(數(shù)據(jù)分組包含左端值不包含右端值)

1)你認為哪種教學(xué)方式學(xué)生的參與度更高?簡要說明理由.

2)從教學(xué)方式為直播的學(xué)生中任意抽取一位學(xué)生,估計該學(xué)生的參與度在0.8及以上的概率是多少?

3)該校共有800名學(xué)生,選擇錄播直播的人數(shù)之比為13,估計參與度在0.4以下的共有多少人?

【答案】1直播教學(xué)方式學(xué)生的參與度更高,理由見解析;(230%;(350

【解析】

1)根據(jù)直播和錄播的參與度的人數(shù)即可判斷;

2)根據(jù)學(xué)生的參與度在0.8及以上的人數(shù)除以總?cè)藬?shù)即可求解;

3)先求出錄播直播的學(xué)生人數(shù),再分別乘以其所占百分比即可求解.

1直播教學(xué)方式學(xué)生的參與度更高,理由如下:

∵直播參與度為“0.6-0.8”、“0.8-1”的人數(shù)均大于錄播參與度的人數(shù),

直播教學(xué)方式學(xué)生的參與度更高;

2P(參與度在0.8及以上)=;

3)該校共有800名學(xué)生,

∴選擇錄播的人數(shù)為800×=200(人)

選擇直播的人數(shù)為800×=600(人)

∴故參與度在0.4以下的共有200×+600×=20+30=50(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,C,EA在同一直線上,DE,B在同一直線上測得A處與E處的距離為80 m,C處與D處的距離為34 m,C90°ABE90°,BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點CO上一點(與點A,B不重合),過點C作直線PQ,使得∠ACQ=∠ABC

1)求證:直線PQO的切線.

2)過點AADPQ于點D,交O于點E,若O的半徑為2,sinDAC,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A0,1),它的頂點為B1,3).

1)求這個二次函數(shù)的表達式;

2)過點AACAB交拋物線于點C,點P是直線AC上方拋物線上的一點,當(dāng)△APC面積最大時,求點P的坐標(biāo)和△APC的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小球從左側(cè)的斜坡滾下,到達底端后又沿著右側(cè)斜坡向上滾,在這個過程中,小球的運動速度v(單位:m/s)與運動時間t (單位:s)的函數(shù)圖象如圖2,則該小球的運動路程y(單位:m)與運動時間t(單位:s)之間的函數(shù)圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.

1A,B兩款保溫杯的銷售單價各是多少元?

2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進這兩款保溫杯共120個,且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進價每個均為20元,應(yīng)如何進貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“六一”兒童節(jié)前,玩具商店根據(jù)市場調(diào)查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.第一、二批玩具每套的進價分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王計劃批發(fā)山東大櫻桃泰國榴蓮兩個品種的水果共120斤,櫻桃和榴蓮的批發(fā)價分別為32/斤和40/.設(shè)購買了櫻桃x.

(1)若小王批發(fā)這兩種水果正好花費了4400元,那么小王分別購買了多少斤櫻桃和榴蓮?填寫下表,并列方程求解;

品種

批發(fā)價(元)

購買斤數(shù)

小王應(yīng)付的錢數(shù)(元)

櫻桃

32

x

榴蓮

40

(2)設(shè)小王購買兩種水果的總花費為y元,試寫出yx之間的函數(shù)表達式.

(3)若要求所批發(fā)的榴蓮的斤數(shù)不少于櫻桃斤數(shù)的2倍,那么購買櫻桃的數(shù)量為多少時,可使小王的總花費最少?這個最少花費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲樓AB20米,乙樓CD10米,兩棟樓之間的水平距離BD30m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小明在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求該電視塔的高度EF

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,

查看答案和解析>>

同步練習(xí)冊答案