【題目】如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____
【答案】4
【解析】
根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得出四邊形DBEC是菱形,由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進行解答.
∵CE∥DB,BE∥DC,
∴四邊形DBEC為平行四邊形.
又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,
∴CD=BD=AC,
∴平行四邊形DBEC是菱形;
∵點D,F(xiàn)分別是AC,AB的中點,AD=3,DF=1,
∴DF是△ABC的中位線,AC=2AD=6,S△BCD=S△ABC,
∴BC=2DF=2.
又∵∠ABC=90°,
∴AB==.
∵平行四邊形DBEC是菱形,
∴S四邊形DBEC=2S△BCD=S△ABC=ABBC=×4×2=4,
故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)在第一象限內(nèi)交于A(x1 , y1),B(x2 , y2)兩點,與x軸交于點C(x0 , 0)
(1)若A(2,2)、B(4,n) ①求直線和雙曲線解析式
②直接寫出S△AOB=
(2)直接寫出x1、x2、x0之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“書香校響園”建設(shè)的號召,在全校形成良好的閱讀氛圍,隨機調(diào)查了部分學(xué)生平均每天閱讀時間,統(tǒng)計結(jié)果如圖所示,則本次調(diào)查中閱讀時間為的眾數(shù)和中位數(shù)分別是( )
A.2和1
B.1.25和1
C.1和1
D.1和1.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點A多少km處,才能使它到兩所學(xué)校的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細閱讀下面例題,解答問題
例題:已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.
解:設(shè)另一個因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個因式為(x﹣7),m的值為﹣21.
問題:
(1)若二次三項式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問題:若二次三項式2x2+3x﹣k有一個因式是(2x﹣5),求另一個因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】木桿AB斜靠在墻壁上,當木桿的上端A沿墻壁NO豎直下滑時,木桿的底端B也隨之沿著射線OM方向滑動.下列圖中用虛線畫出木桿中點P隨之下落的路線,其中正確的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設(shè)每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價應(yīng)定為每噸多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com