【題目】如圖所示,已知AB∥CD,分別探究下面圖形中∠APC,∠PAB,∠PCD的關系,請你從四個圖形中任選一個,說明你所探究的結論的正確性.
①結論:(1)
(2)
(3)
(4)
②選擇結論。1) , 說明理由.
【答案】∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD
【解析】解:
①(1)過點P作PE∥AB,則AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°;
(2)過點P作直線l∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠3,∠PCD=∠4,
∴∠APC=∠PAB+∠PCD;
(3)∵AB∥CD,
∴∠PEB=∠PCD,
∵∠PEB是△APE的外角,
∴∠PEB=∠PAB+∠APC,
∴∠PCD=∠APC+∠PAB;
(4)∵AB∥CD,
∴∠PAB=∠PFD,
∵∠PFD是△CPF的外角,
∴∠PCD+∠APC=∠PFD,
∴∠PAB=∠APC+∠PCD.
②選擇結論(1),證明同上.
【考點精析】解答此題的關鍵在于理解平行線的性質的相關知識,掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補.
科目:初中數(shù)學 來源: 題型:
【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行九年級體育鍛煉考試,現(xiàn)隨機抽取了部分學生的成績?yōu)闃颖,根?jù)測試評分標準,將他們的得分按優(yōu)秀、良好、及格、不及格(分別用A、B、C、D表示)四個等級進行統(tǒng)計,并繪制成下面兩圖不完整的統(tǒng)計圖和統(tǒng)計表:
等級 | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 45~50 | 40 | 0.4 |
B | 40~44 | 42 | x |
C | 35~39 | m | 0.12 |
D | 30~34 | 6 | 0.03 |
合計 | 1.00 |
請根據(jù)以如圖表提供的信息,解答下列問題:
(1)m= ,x= ;
(2)在扇形統(tǒng)計圖中,B等級所對應的圓心角是 度;
(3)若該校九年級共有600名學生參加了體育模板考試,請你估計成績等級達到“優(yōu)秀”的學生有 人;
(4)小明同學第一次模擬考試成績?yōu)?0分,第二次成績?yōu)?8分,則小明體育成績提高的百分率是 %.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,今年春節(jié)期間(除夕到初五),微信紅包總收發(fā)次數(shù)達321億次,幾乎覆蓋了全國75%的網(wǎng)民,數(shù)據(jù)“321億”用科學記數(shù)法可表示為( )
A.3.21×108
B.321×108
C.321×109
D.3.21×1010
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當AD= 時,四邊形AODC是菱形;
(3)當AD= 時,四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校男子籃球隊10名隊員進行定點投籃練習,每人投籃10次,他們投中的次數(shù)統(tǒng)計如表:
投中次數(shù) | 3 | 5 | 6 | 7 | 8 |
人數(shù) | 1 | 3 | 2 | 2 | 2 |
則這些隊員投中次數(shù)的眾數(shù)為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com