【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點(diǎn),弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD= 時(shí),四邊形AODC是菱形;
(3)當(dāng)AD= 時(shí),四邊形AEDF是正方形.
【答案】(1)證明見解析(2)四邊形AODC是菱形(3)OD⊥AB
【解析】
試題分析:(1)根據(jù)角平分線的性質(zhì),可得DF與DE的關(guān)系,根據(jù)圓周角定理,可得DC與DB的關(guān)系,根據(jù)HL,可得答案;
(2)根據(jù)菱形的性質(zhì),可得OD與CD,OD與BD的關(guān)系,根據(jù)正三角形的性質(zhì),可得∠DBA的度數(shù),根據(jù)三角函數(shù)值,可得答案;
(3)根據(jù)圓周角定理,可得OD⊥AB,根據(jù)勾股定理,可得答案.
試題解析:(1)證明:∵弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴DE=DF.
∵弦AD平分∠BAC,
∴∠FAD=∠BAD,
∴BD=CD.
在Rt△BED和Rt△CFD中,
∴Rt△BED≌Rt△CFD (HL);
(2)四邊形AODC是菱形時(shí),
OD=CD=DB=OB,
∴∠DBA=60°,
∴AD=ABcos∠DBA=asin60°=a,
(3)當(dāng)OD⊥AB,即OD與OE重合時(shí),四邊形AEDF是正方形,
由勾股定理,得
AD=,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB∥CD,分別探究下面圖形中∠APC,∠PAB,∠PCD的關(guān)系,請(qǐng)你從四個(gè)圖形中任選一個(gè),說明你所探究的結(jié)論的正確性.
①結(jié)論:(1)
(2)
(3)
(4)
②選擇結(jié)論 (1) , 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)為了鼓勵(lì)同學(xué)們參加體育鍛煉,決定為每個(gè)班級(jí)配備排球或足球一個(gè),已知一個(gè)排球和兩個(gè)足球需要140元,兩個(gè)排球和一個(gè)足球需要230元.
(1)求排球和足球的單價(jià).
(2)全校共有50個(gè)班,學(xué)校準(zhǔn)備拿出不超過2400元購買這批排球和足球,并且要保證排球的數(shù)量不超過足球數(shù)量的,問:學(xué)校共有幾種購買方案?哪種購買方案總費(fèi)用最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求證:
(1)方程總有兩個(gè)實(shí)數(shù)根;
(2)如果方程的兩根相等,求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P移動(dòng)到AB、CD之間時(shí),如圖(1),這時(shí)∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論.
(2)當(dāng)點(diǎn)P移動(dòng)到如圖(2)的位置時(shí),∠P與∠A、∠C又有怎樣的關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運(yùn)算.
比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com