【題目】一只不透明的袋子中裝有個質地、大小均相同的小球,這些小球分別標有數(shù)字,甲、乙兩人每次同時從袋中各隨機摸出個球,并計算摸出的這個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進行重復實驗.實驗數(shù)據(jù)如下表

摸球總次數(shù)

“和為”出現(xiàn)的頻數(shù)

“和為”出現(xiàn)的頻率

解答下列問題:

如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為”的頻率將穩(wěn)定在它的概率附近.估計出現(xiàn)“和為”的概率是_______;

如果摸出的這兩個小球上數(shù)字之和為的概率是,那么的值可以取嗎?請用列表法或畫樹狀圖法說明理由;如果的值不可以取,請寫出一個符合要求的值.

【答案】1;(2的值可以為其中一個.

【解析】

1)根據(jù)實驗次數(shù)越大越接近實際概率求出出現(xiàn)“和為8”的概率即可;

2)根據(jù)小球分別標有數(shù)字3、45、x,用列表法或畫樹狀圖法說明當x=7時,得出數(shù)字之和為9的概率,即可得出答案.

1)利用圖表得出:

突驗次數(shù)越大越接近實際概率,所以出現(xiàn)和為8的概率是0.33

2)當x=7

則兩個小球上數(shù)家之和為9的概率是

x的值不可以取7

∴出現(xiàn)和為9的概率是三分之一,即有3種可能,

3+x=94+x=95+x=9,

解得:x=6,x=5,x=4,故x的值可以為45,6其中一個.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,ECD的中點,連接OE.過點CCFBD交線段OE的延長線于點F,連接DF

求證:(1ODE≌△FCE;

2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘觀光游船從港口以北偏東的方向出港觀光,航行海里至處時發(fā)生了側翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東方向,馬上以海里每小時的速度前往救援,海警船到達事故船處所需的時間大約為________小時(用根號表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,動點從點出發(fā),在邊上以每秒2的速度向點勻速運動,同時動點從點出發(fā),在邊上以每秒的速度向點勻速運動,設運動時間為(),連接

1)若,求的值;

2)若相似,求的值;

3)當為何值時,四邊形的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 隨機拋擲一枚均勻的硬幣,落地后反面一定朝上。

B. 1,2,3,4,5中隨機取一個數(shù),取得奇數(shù)的可能性較大。

C. 某彩票中獎率為,說明買100張彩票,有36張中獎。

D. 打開電視,中央一套正在播放新聞聯(lián)播。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(點在點的左側),與軸相交于點為拋物線上一點,橫坐標為,且

⑴求此拋物線的解析式;

⑵當點位于軸下方時,求面積的最大值;

⑶設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為

①求關于的函數(shù)解析式,并寫出自變量的取值范圍;

②當時,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經過B20)、C04)兩點,拋物線與x軸的另一交點為A

1)求拋物線的解析式;

2)若點P為第一象限內拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;

3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y軸相交于點A03),與x正半軸相交于點B,對稱軸是直線x=1

1)求此拋物線的解析式以及點B的坐標.

2)動點M從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向運動,同時動點N從點O出發(fā),以每秒3個單位長度的速度沿y軸正方向運動,當N點到達A點時,M、N同時停止運動.過動點Mx軸的垂線交線段AB于點Q,交拋物線于點P,設運動的時間為t秒.

①當t為何值時,四邊形OMPN為矩形.

②當t0時,BOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作OBC于點D,過點DAC的垂線交AC于點E,交AB的延長線于點F

1)求證:DEO相切;

2)若CDBF,AE3,求DF的長.

查看答案和解析>>

同步練習冊答案