【題目】如圖,已知拋物線與y軸相交于點(diǎn)A(0,3),與x正半軸相交于點(diǎn)B,對稱軸是直線x=1.
(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).
(2)動點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿x軸正方向運(yùn)動,同時(shí)動點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長度的速度沿y軸正方向運(yùn)動,當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動.過動點(diǎn)M作x軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPN為矩形.
②當(dāng)t>0時(shí),△BOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
【答案】(1),B點(diǎn)坐標(biāo)為(3,0);(2)①;②.
【解析】
(1)由對稱軸公式可求得b,由A點(diǎn)坐標(biāo)可求得c,則可求得拋物線解析式;再令y=0可求得B點(diǎn)坐標(biāo);
(2)①用t可表示出ON和OM,則可表示出P點(diǎn)坐標(biāo),即可表示出PM的長,由矩形的性質(zhì)可得ON=PM,可得到關(guān)于t的方程,可求得t的值;②由題意可知OB=OA,故當(dāng)△BOQ為等腰三角形時(shí),只能有OB=BQ或OQ=BQ,用t可表示出Q點(diǎn)的坐標(biāo),則可表示出OQ和BQ的長,分別得到關(guān)于t的方程,可求得t的值.
(1)∵拋物線對稱軸是直線x=1,
∴﹣=1,解得b=2,
∵拋物線過A(0,3),
∴c=3,
∴拋物線解析式為,令y=0可得,解得x=﹣1或x=3,
∴B點(diǎn)坐標(biāo)為(3,0);
(2)①由題意可知ON=3t,OM=2t,
∵P在拋物線上,
∴P(2t,),
∵四邊形OMPN為矩形,
∴ON=PM,
∴3t=,解得t=1或t=﹣(舍去),
∴當(dāng)t的值為1時(shí),四邊形OMPN為矩形;
②∵A(0,3),B(3,0),
∴OA=OB=3,且可求得直線AB解析式為y=﹣x+3,
∴當(dāng)t>0時(shí),OQ≠OB,
∴當(dāng)△BOQ為等腰三角形時(shí),有OB=QB或OQ=BQ兩種情況,由題意可知OM=2t,
∴Q(2t,﹣2t+3),
∴OQ=,BQ=|2t﹣3|,又由題意可知0<t<1,當(dāng)OB=QB時(shí),則有|2t﹣3|=3,解得t=(舍去)或t=;
當(dāng)OQ=BQ時(shí),則有=|2t﹣3|,解得t=;
綜上可知當(dāng)t的值為或時(shí),△BOQ為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)
如圖1,在中,,過點(diǎn)作直線平行于.,點(diǎn)在直線上移動,角的一邊始終經(jīng)過點(diǎn),另一邊與交于點(diǎn),研究和的數(shù)量關(guān)系.
(探究發(fā)現(xiàn))
(1)如圖2,某數(shù)學(xué)興趣小組運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)移動到使點(diǎn)與點(diǎn)重合時(shí),通過推理就可以得到,請寫出證明過程;
(數(shù)學(xué)思考)
(2)如圖3,若點(diǎn)是上的任意一點(diǎn)(不含端點(diǎn)),受(1)的啟發(fā),這個(gè)小組過點(diǎn)作交于點(diǎn),就可以證明,請完成證明過程;
(拓展引申)
(3)如圖4,在(1)的條件下,是邊上任意一點(diǎn)(不含端點(diǎn)),是射線上一點(diǎn),且,連接與交于點(diǎn),這個(gè)數(shù)學(xué)興趣小組經(jīng)過多次取點(diǎn)反復(fù)進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)點(diǎn)在某一位置時(shí)的值最大.若,請你直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的四個(gè)頂點(diǎn)都在雙曲線y=(k>0)上,BC=2AB,且矩形ABCD的面積是32,則k的值是( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)交x軸于點(diǎn)A(2,0),B(﹣3,0),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)d(﹣6,﹣6),連接AD,BD.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)M為X軸上方的拋物線上一點(diǎn),能否在點(diǎn)A左側(cè)的x軸上找到另一點(diǎn)N,使得△AMN與△ABD相似?若相似,請求出此時(shí)點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是直線AD上方的拋物線上一動點(diǎn)(不與A,D重合),過點(diǎn)P作PQ∥y軸交直線AD于點(diǎn)Q,以PQ為直徑作⊙E,則⊙E在直線AD上所截得的線段長度的最大值等于 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018無錫市體育中考男生項(xiàng)目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項(xiàng)進(jìn)行考試.其中速度耐力類項(xiàng)目有:50米跑、800米跑、50米游泳;力量類項(xiàng)目有:擲實(shí)心球、引體向上;靈巧類項(xiàng)目有:30秒鐘跳繩、立定跳遠(yuǎn)、俯臥撐、籃球運(yùn)球.男生小明“50米跑”是強(qiáng)項(xiàng),他決定必選,其它項(xiàng)目在平時(shí)測試中成績完全相同,他決定隨機(jī)選擇.
(1)請用畫樹狀圖或列表的方法求“小明‘選50米跑、引體向上和立定跳遠(yuǎn)’”的概率;
(2)小明所選的項(xiàng)目中有立定跳遠(yuǎn)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是弦,點(diǎn)在圓外,于,交于點(diǎn),連接,,,.
(1)求證:是的切線;
(2)求證:;
(3)設(shè)的面積為,的面積為,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運(yùn)動,點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動,P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com