【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),直線與x軸交于點(diǎn).
(1)求的值;
(2)已知點(diǎn),過(guò)點(diǎn)P作平行于x軸的直線,交直線于點(diǎn)C,過(guò)點(diǎn)P作平行于y軸的直線交反比例函數(shù)的圖象于點(diǎn)D,當(dāng)時(shí),結(jié)合函數(shù)的圖象,求出n的值.
【答案】(1),;(2)或.
【解析】
(1)將A點(diǎn)代入反比例函數(shù)解析式,將B點(diǎn)代入一次函數(shù)解析式,即可求出答案;
(2)由題意可得,,PD=|-2n|,在分點(diǎn)D在點(diǎn)P的下方時(shí)和點(diǎn)D在點(diǎn)P的上方時(shí)兩種情況求解即可.
解:(1)反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),
.
又直線與x軸交于點(diǎn),
;
(2)由(1)知,k=-4,m=2,
則反比例函數(shù)為:,
直線函數(shù)解析式為:y=-2x+2,
如圖點(diǎn)P(n,-2n),
過(guò)P點(diǎn)平行于x軸的直線為:y=-2n,
過(guò)P點(diǎn)平行于y軸的直線為:x=n,
則把y=-2n代入y=-2x+2,
則有-2n=-2x+2,解得x=n+1,
則C點(diǎn)坐標(biāo)為(n+1,-2n),
則PC=n+l-n=1,
把x=n代入,
則有,
則P點(diǎn)坐標(biāo)為(n,),
則PD=|-2n|,
又∵PD=2PC,
當(dāng)-2n>0時(shí),-2n=2×1,
n2+n-2=0,
(n+2)(n-1)=0,
n1=1,n2=-2(舍去),
經(jīng)檢驗(yàn)n=1是原方程的解,
當(dāng)-2n<0時(shí),2n-=2×1,
n2-n-2=0,
(n-2)(n+1)=0,
n1=2,n2=-1(舍去),
經(jīng)檢驗(yàn)n=2是原方程的解,
綜上,當(dāng)時(shí),或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形中,,點(diǎn)為邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),點(diǎn)在邊上,且,將線段繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)120°得線段,連接.
(1)依題意補(bǔ)全圖形;
(2)求證:為等邊三角形
(3)用等式表示線段的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E,H在矩形ABCD的AD邊上,點(diǎn)F,G在BC邊上,將矩形ABCD沿EF,GH折疊,使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處.折疊后,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D',若∠FPG=90°,A'E=3,D'H=1,則矩形ABCD的周長(zhǎng)等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=2,E是邊CD上一點(diǎn),將△ADE沿直線AE折疊得到△AFE,BF的延長(zhǎng)線交邊CD于點(diǎn)G,則DG的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象與反比例函數(shù)y=圖象都經(jīng)過(guò)點(diǎn)A(a,4),一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn)C(3,0),且與兩坐標(biāo)軸圍成的三角形的面積為3.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)將直線AB向下平移5個(gè)單位長(zhǎng)度后與第四象限內(nèi)的反比例函數(shù)圖象交于點(diǎn)D,連接AD、BD,求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系內(nèi)任意一點(diǎn)P,過(guò)P點(diǎn)作軸于點(diǎn)M,軸于點(diǎn)N,連接,則稱的長(zhǎng)度為點(diǎn)P的垂點(diǎn)距離,記為h.特別地,點(diǎn)P與原點(diǎn)重合時(shí),垂點(diǎn)距離為0.
(1)點(diǎn)的垂點(diǎn)距離分別為________,___________,____________;
(2)點(diǎn)P在以為圓心,半徑為3的上運(yùn)動(dòng),求出點(diǎn)P的垂點(diǎn)距離h的取值范圍;
(3)點(diǎn)T為直線位于第二象限內(nèi)的一點(diǎn),對(duì)于點(diǎn)T的垂點(diǎn)距離h的每個(gè)值有且僅有一個(gè)點(diǎn)T與之對(duì)應(yīng),求點(diǎn)T的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線與x軸交于點(diǎn),且.拋物線與y軸交于點(diǎn)C,將點(diǎn)C向上移動(dòng)1個(gè)單位得到點(diǎn)D.
(1)求拋物線對(duì)稱軸;
(2)求點(diǎn)D縱坐標(biāo)(用含有a的代數(shù)式表示);
(3)已知點(diǎn),若拋物線與線段只有一個(gè)公共點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=a(x+2)(x﹣4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線y=﹣x+拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為﹣5.
(1)求拋物線的函數(shù)表達(dá)式;
(2)該二次函數(shù)圖象上有一點(diǎn)P(x,y)使得S△BCD=S△ABP,求點(diǎn)P的坐標(biāo);
(3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,求2AF+DF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形先向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到正方形,形成了中間深色的正方形及四周淺色的邊框,已知正方形的面積為16,則四周淺色邊框的面積是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com