【題目】在平面直角坐標(biāo)系中,已知拋物線與x軸交于點,且.拋物線與y軸交于點C,將點C向上移動1個單位得到點D.
(1)求拋物線對稱軸;
(2)求點D縱坐標(biāo)(用含有a的代數(shù)式表示);
(3)已知點,若拋物線與線段只有一個公共點,求a的取值范圍.
【答案】(1)對稱軸;(2);(3)當(dāng)或時,拋物線與線段只有一個交點.
【解析】
(1)直接根據(jù)二次函數(shù)的對稱軸計算即可;
(2)根據(jù),對稱軸可得, ,把代入得,則有,可得C點坐標(biāo)為,再根據(jù)平移,可得D縱坐標(biāo);
(3)分兩種情況:當(dāng)和當(dāng)對拋物線的圖像進(jìn)行討論即可.
(1)拋物線的對稱軸為:
(2),對稱軸
可得,
把代入得:
∴
∴C點坐標(biāo)為,
,
(3)如圖示,
①當(dāng)時
將點代入拋物線得:
,
結(jié)合函數(shù)圖象,可得當(dāng)時,拋物線與線段只有一個交點;
②如下圖示,當(dāng)時,
拋物線的頂點為,
結(jié)合函數(shù)圖象,可得當(dāng)時,拋物線與線段只有一個交點,
∴ ,
綜上所述,當(dāng)或時,拋物線與線段只有一個交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠C=90°,AB=15,BC=9,點D,E分別在AC,BC上,CD=4 x,CE=3x,其中0<x<3.
(1)求證:DE∥AB;
(2)當(dāng)x=1時 ,求點E到AB的距離;
(3) 將△DCE繞點E逆時針方向旋轉(zhuǎn),使得點D落在AB邊上的D′處. 在旋轉(zhuǎn)的過程中,若點D′的位置有且只有一個,求x的取值范圍.
圖1 備用圖1 備用圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過點,直線與x軸交于點.
(1)求的值;
(2)已知點,過點P作平行于x軸的直線,交直線于點C,過點P作平行于y軸的直線交反比例函數(shù)的圖象于點D,當(dāng)時,結(jié)合函數(shù)的圖象,求出n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年是5G爆發(fā)元年,三大運營商都在政策的支持下,加快著5G建設(shè)的步伐.某通信公司實行的5G暢想套餐,部分套餐資費標(biāo)準(zhǔn)如下:
套餐類型 | 月費(元/月) | 套餐內(nèi)包含內(nèi)容 | 套餐外資費 | ||
國內(nèi)數(shù)據(jù)流量(GB) | 國內(nèi)主叫(分鐘) | 國內(nèi)流量 | 國內(nèi)主叫 | ||
套餐1 | 128 | 30 | 200 | 每5元1GB,用滿3GB后每3元1GB,不足部分按照0.03/元MB收取 | 0.19元/分鐘 |
套餐2 | 158 | 40 | 300 | ||
套餐3 | 198 | 60 | 500 | ||
套餐4 | 238 | 80 | 600 |
小武每月大約使用國內(nèi)數(shù)據(jù)流量49GB,國內(nèi)主叫350分鐘,若想使每月付費最少,則他應(yīng)預(yù)定的套餐是( )
A.套餐1B.套餐2C.套餐3D.套餐4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小志自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有盒裝草莓、荔枝、山竹,價格依次為40元/盒、60元/盒、80元/盒.為增加銷量,小志對這三種水果進(jìn)行促銷:一次性購買水果的總價超過100元時,超過的部分打5折,每筆訂單限購3盒.顧客支付成功后,小志會得到支付款的80%作為貨款.
(1)顧客一筆訂單購買了上述三種水果各一盒,則小志收到的貨款是________元;
(2)小志在兩筆訂單中共售出原價180元的水果,則他收到的貨款最少是________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,則∠CMA的度數(shù)為( 。
A.30°B.35°C.70°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類似地我們可以用折紙的方法求方程的一個正根.如圖,一張邊長為1的正方形的紙片,先折出、的中點、,再折出線段,然后通過沿線段折疊使落在線段上,得到點的新位置,并連接、,此時,在下列四個選項中,有一條線段的長度恰好是方程的一個正根,則這條線段是( )
A.線段B.線段C.線段D.線段
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點A(0,4),與x軸負(fù)半軸交于B,與正半軸交于點C(8,0),且∠BAC=90°.
(1)求該二次函數(shù)解析式;
(2)若N是線段BC上一動點,作NE∥AC,交AB于點E,連結(jié)AN,當(dāng)△ANE面積最大時,求點N的坐標(biāo);
(3)若點P為x軸上方的拋物線上的一個動點,連接PA、PC,設(shè)所得△PAC的面積為S.問:是否存在一個S的值,使得相應(yīng)的點P有且只有2個?若有,求出這個S的值,并求此時點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com