(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.

【答案】分析:(1)①由于CD∥AB,所以△ABM和△ABN中,AB邊上的高相等,則兩個三角形是同底等高的三角形,所以它們的面積相等;
②分別過D、E作AB的垂線,設垂足為H、K;通過證△DAH≌△EBK,來得到DH=KE;則所求的兩個三角形是同底等高的三角形,由此得證;
(2)根據A、C的坐標,即可求得拋物線的解析式,進而可求出A、D的解析式;用待定系數(shù)法可確定直線AD的解析式;假設存在符合條件的E點,過C作CD⊥x軸于D,交直線AD于H;過E作EF⊥x軸于F,交直線AD于P;根據拋物線的對稱軸方程及直線AD的解析式,易求得H點的坐標,即可得到CH的長;設出E點橫坐標,根據直線AD和拋物線的解析式,可表示出P、E的縱坐標,即可得到PE的長;根據(1)題得到的結論,當PE=CH時,所求的兩個三角形面積相等,由此可列出關于E點橫坐標的方程,從而求出E點的坐標.(需注意的是E點可能在直線AD的上方或下方,這兩種情況下PE的表達式會有所不同,要分類討論)
解答:證明:(1)①分別過點M,N作ME⊥AB,NF⊥AB,垂足分別為點E,F(xiàn)
∵AD∥BC,AD=BC,
∴四邊形ABCD為平行四邊形;
∴AB∥CD;
∴ME=NF;
∵S△ABM=,S△ABN=,
∴S△ABM=S△ABN(1分)
②解:相等;理由如下:分別過點D,E作DH⊥AB,EK⊥AB,垂足分別為H,K;
則∠DHA=∠EKB=90°;
∵AD∥BE,
∴∠DAH=∠EBK;
∵AD=BE,
∴△DAH≌△EBK;
∴DH=EK;(2分)
∵CD∥AB∥EF,
∴S△ABM=,S△ABG=,
∴S△ABM=S△ABG;(3分)
解:(2)存在.(4分)
因為拋物線的頂點坐標是C(1,4),
所以,可設拋物線的表達式為y=a(x-1)2+4;
又因為拋物線經過點A(3,0),
所以將其坐標代入上式,得0=a(3-1)2+4,解得a=-1;
∴該拋物線的表達式為y=-(x-1)2+4,
即y=-x2+2x+3;(5分)
∴D點坐標為(0,3);
設直線AD的表達式為y=kx+3,
代入點A的坐標,得0=3k+3,解得k=-1;
∴直線AD的表達式為y=-x+3;
過C點作CG⊥x軸,垂足為G,交AD于點H;則H點的縱坐標為-1+3=2;
∴CH=CG-HG=4-2=2;(6分)
設點E的橫坐標為m,則點E的縱坐標為-m2+2m+3;
過E點作EF⊥x軸,垂足為F,交AD于點P,則點P的縱坐標為3-m,EF∥CG;
由﹙1﹚可知:若EP=CH,則△ADE與△ADC的面積相等;
①若E點在直線AD的上方,
則PF=3-m,EF=-m2+2m+3,
∴EP=EF-PF=-m2+2m+3-(3-m)=-m2+3m;

∴-m2+3m=2,
解得m1=2,m2=1;(7分)
當m=2時,PF=3-2=1,EF=1+2=3;
∴E點坐標為(2,3);
同理當m=1時,E點坐標為(1,4),與C點重合;(8分)
②若E點在直線AD的下方,
則PE=(3-m)-(-m2+2m+3)=m2-3m;(9分)
∴m2-3m=2,
解得,;(10分)
時,E點的縱坐標為;
時,E點的縱坐標為;
∴在拋物線上存在除點C以外的點E,使得△ADE與△ACD的面積相等,E點的坐標為E1(2,3);E2,-);E3,).(12分)

點評:此題主要考查了平行線的性質、三角形面積的求法、全等三角形的判定和性質、二次函數(shù)解析式的確定、函數(shù)圖象交點坐標的求法等知識;同時還考查了分類討論的數(shù)學思想,能力要求高,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
(2)結論應用:
①如圖2,點M,N在反比例函數(shù)y=
kx
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點M,N的位置如圖3所示,請判斷MN與EF是否平行.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)探究新知:
如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
精英家教網
(2)結論應用:
①如圖2,點M,N在反比例函數(shù)y=
kx
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn).
試證明:MN∥EF.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•日照)在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知
如圖①,⊙O是△ABC的內切圓,與三邊分別相切于點E、F、G.
(1)求證:內切圓的半徑r1=1; 
(2)求tan∠OAG的值;
(Ⅱ)結論應用
(1)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2的值;
(2)如圖③,若半徑為rn的n個等圓⊙O1、⊙O2、…、⊙On依次外切,且⊙O1與AC、AB相切,⊙On與BC、AB相切,⊙O1、⊙O2、…、⊙On均與AB相切,求rn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北一模)(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.則S△ABM
=
=
S△ABN(填“<”,“=”,“>”).
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點.試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D.試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案