【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,2),B(﹣3,﹣2)
(1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為 .
(2)將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為 .
(3)求A,B,C,D組成的四邊形ABCD的面積。
【答案】(1)(2,2);()2)(2,1);(3).
【解析】
試題分析:(1)根據(jù)關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),可得答案;
(2)根據(jù)點(diǎn)向右平移加,向上平移加,可得答案;
(3)根據(jù)圖形割補(bǔ)法,可得矩形BFDE,根據(jù)面積的和差,可得答案.
試題解析:(1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為 (2,2);
(2)將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為(2,1);
(3)如圖
,
S四邊形ABCD=S矩形BFDE-S△ABE-S△BCF=5×4-×1×4-×1×5=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因?yàn)?/span>,令=0,則(x+3)(x-2)=0,x=-3或x=2,反過來,x=2能使多項(xiàng)式的值為0.
利用上述閱讀材料求解:
(1)若x﹣4是多項(xiàng)式x2+mx+8的一個(gè)因式,求m的值;
(2)若(x﹣1)和(x+2)是多項(xiàng)式的兩個(gè)因式,試求a,b的值;
(3)在(2)的條件下,把多項(xiàng)式因式分解的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABC的頂點(diǎn)A在拋物線y=x2上,頂點(diǎn)B,C在x軸的正半軸上,且點(diǎn)B的坐標(biāo)為(1,0)
(1)求點(diǎn)D坐標(biāo);
(2)將拋物線y=x2適當(dāng)平移,使得平移后的拋物線同時(shí)經(jīng)過點(diǎn)B與點(diǎn)D,求平移后拋物線解析式,并說明你是如何平移的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎自行車,乙步行均從地出發(fā),以各自的速度勻速向地行駛,其中甲先出發(fā)到達(dá)地,停留分鐘后,按原路原速返回到地,乙則一直步行到地,如圖是甲乙兩人之間的距離米與甲用時(shí)之間的部分函數(shù)圖象.
(1)請(qǐng)直接寫出甲,乙兩人的速度,并將圖中的( 。﹥(nèi)填上正確的值;
(2)求甲從地返回到與乙相遇這段過程中,與之間的函數(shù)關(guān)系式;
(3)求乙在向地行駛過程中甲乙兩人相距米時(shí),甲所用時(shí)間及,兩地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點(diǎn)O,以O(shè)為圓心、OB為半徑作圓,且⊙O過A點(diǎn).
(1)如圖①,若⊙O的半徑為5,求線段OC的長;
(2)如圖②,過點(diǎn)A作AD∥BC交⊙O于點(diǎn)D,連接BD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,且AF=DF.
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)AB、AC之間滿足 時(shí),四邊形ADCE是矩形;
(3)當(dāng)AB、AC之間滿足 時(shí),四邊形ADCE是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com