【題目】如圖,在中,,邊上的中線,,且,連接.

(1)求證:四邊形為菱形;

(2)連接,若平分,,求的長.

【答案】(1)證明見解析;(2)

【解析】(1)由中線的定義和已知可得到AE=CD,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形得到四邊形ADCE為平行四邊形,BAC=90°,ADBC邊上的中線得到AD=BC=CD即可得到四邊形ADCE為菱形.

2)連接BEAD相交于點O.由角平分線的性質(zhì)和平行線的性質(zhì)可得到AB=AE,由BD=BC=AE,得到AB=BD,由等腰三角形三線合一的性質(zhì)得到∠BOD=90°.由ADCE,得到∠BEC=∠BOD=90°.在△BEC中,由勾股定理即可得出結(jié)論.

(1)∵ADBC邊上的中線,∴BD=CD=BC

AE=BC,∴AE=CD

AEBC,∴四邊形ADCE為平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)

∵∠BAC=90°,ADBC邊上的中線,∴AD=BC=CD

∴四邊形ADCE為菱形(有一組鄰邊相等的平行四邊形是菱形)

2)連接BEAD相交于點O

∵若BE平分∠ABC,∴∠ABE=∠CBE

AEBC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE

BD=BC=AE,∴AB=BD,∴∠BOD=90°.

∵四邊形ADCE為菱形,AE=2,∴AD=DC=CE=AE=2,BC=4

ADCE,∴∠BEC=∠BOD=90°,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了節(jié)約用水,采用分段收費標準.若某戶居民每月應(yīng)交水費y()與用水量x()之間關(guān)系的圖象如圖,根據(jù)圖象回答:

(1)該市自來水收費時,若使用不足5噸,則每噸收費多少元?超過5噸部分每噸收費多少元?

(2)若某戶居民每月用水3.5噸,應(yīng)交水費多少元?若某月交水費17元,該戶居民用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(﹣2,﹣1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.

(1)求一次函數(shù)的解析式;

(2)求點C和點D的坐標;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從機械廠購進甲、乙兩種零件進行銷售,若甲種零件每件的進價是乙種零件每件進價的,用1600元單獨購進一種零件時,購進甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進價分別為多少元?

(2)若該商店計劃購進甲、乙兩種零件共110件,準備將零件批發(fā)給零售商. 甲種零件的批發(fā)價是每件100元,乙種零件的批發(fā)價是每件130元,該商店計劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進多少件甲種零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)

進價(元/件)

20

30

售價(元/件)

29

40

(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點分別在、軸的正半軸上,點在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動點軸的上方,且滿足.

(1)若點在這個反比例函數(shù)的圖像上,求點的坐標;

(2)連接、,求的最小值;

(3)若點是平面內(nèi)一點,使得以、、為頂點的四邊形是菱形,則請你直接寫出滿足條件的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BCBD平分∠ABC.過點DAB的平行線,過點BAC的平行線,兩平行線相交于點E BCDE于點F,連接CE.求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距50單位長度。小李從A地出發(fā)去B地,以每分鐘2單位長度的速度行進,第一次他向左1單位長度,第二次他向右2單位長度,第三次再向左3單位長度,第四次又向右4單位長度,……,按此規(guī)律行進,如果A地在數(shù)軸上表示的數(shù)為-16.

(1)B地在數(shù)軸上表示的數(shù)為________________。

(2)若B地在原點的右側(cè),經(jīng)過第八次進行后,小李到達點P,此時點P與點B相距_____________單位長度,八次運動完成后一共經(jīng)過__________分鐘。

(3)若經(jīng)過n次(n為正整數(shù))行進后,小李到達點Q,在數(shù)軸上點Q表示的數(shù)如何表示?(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案