【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點B,A,直線y=-2x+1與y軸交于點C,與直線y=kx+4交于點D,△ACD的面積是.
(1)求直線AB的表達式;
(2)設點E在直線AB上,當△ACE是直角三角形時,請直接寫出點E的坐標.
【答案】(1)直線AB的表達式為y=x+4;(2)當△ACE是直角三角形時,點E的坐標為(-3,1)或(-,).
【解析】
(1)將=0分別代入兩個一次函數表達式中求出點A、C的坐標,進而即可得出AC的長度,再根據三角形的面積公式結合△ACD的面積即可求出點D的橫坐標,利用一次函數圖象上點的坐標特即可求出點D的坐標,由點D的坐標利用待定系數法即可求出直線AB的表達式;
(2)由直線AB的表達式即可得出△ACE為等腰直角三角形,分∠ACE=90和∠AEC=90兩種情況考慮,根據點A、C的坐標利用等腰直角三角形的性質即可得出點E的坐標,此題得解.
(1)當x=0時,y=kx+4=4,y=-2x+1=1,
∴A(0,4),C(0,1),
∴AC=3.
∵S△ACD=AC·(-xD)=-xD=,
∴xD=-1.
當x=-1時,y=-2x+1=3,
∴D(-1,3).
將D(-1,3)代入y=kx+4,得-k+4=3,
解得k=1,
∴直線AB的表達式為y=x+4.
(2)∵直線AB的表達式為y=x+4,
∴△ACE為等腰直角三角形.
如圖,當∠ACE=90°時,
∵A(0,4),C(0,1),AC=3,
∴CE1=3,E1的橫坐標為-3.
將x=-3代入y=x+4中,得y=1,
∴E1(-3,1);
當∠AE2C=90°時,
∵A(0,4),C(0,1),AC=3,
過點E2作E2F⊥AC于點F,E2F=AF=FC=AC=,
∴E2(-,).
綜上所述,當△ACE是直角三角形時,點E的坐標為(-3,1)或(-,).
科目:初中數學 來源: 題型:
【題目】某手機經銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2臺甲型號手機和1臺乙型號手機,共需要資金2800元;若購進3臺甲型號手機和2臺乙型號手機,共需要資金4600元.
(1)求甲、乙型號手機每臺進價為多少元?
(2)該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?請寫出進貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請在圖中標明旋轉中心P的位置并寫出其坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一等腰直角三角形紙片,以它的對稱軸為折痕,將三角形對折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班“2016年聯歡會”中,有一個摸獎游戲:有4張紙牌,背面都是喜羊羊頭像,正面有2張是笑臉,2張是哭臉,現將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.
(1)現在小芳和小霞分別有一次翻牌機會,若正面是笑臉,則小芳獲獎;若正面是哭臉,則小霞獲獎,她們獲獎的機會相同嗎?判斷并說明理由.
(2)如果小芳、小明都有翻兩張牌的機會.翻牌規(guī)則:小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現笑臉就獲獎.請問他們獲獎的機會相等嗎?判斷并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,直線,點為平面上一點,連接與.
(1)如圖1,點在直線、之間,當,時,求.
(2)如圖2,點在直線、之間左側,與的角平分線相交于點,寫出與之間的數量關系,并說明理由.
(3)如圖3,點落在下方,與的角平分線相交于點,與有何數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,左右兩幅圖案關于y軸對稱,右圖案中的左右眼睛的坐標分別是(2,3),(4,3),嘴角左右端點的坐標分別是(2,1),(4,1).
(1)試確定左圖案中的左右眼睛和嘴角左右端點的坐標;
(2)從對稱的角度來考慮,說一說你是怎樣得到的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,ABCD中,點E,F在直線AC上(點E在F左側),BE∥DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若AB⊥AC,AB=4,BC=,當四邊形BEDF為矩形時,求線段AE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com