【題目】如圖,四邊形ABCD為矩形,E為BC邊的中點,連接AE,以AD為直徑的⊙O交AE于點F,連接CF.求證:CF與⊙O相切.
【答案】證明見解析
【解析】整體分析:
連接OF,OC,先證四邊形OAEC是平行四邊形,用SAS證明△ODC≌△OFC,得到∠OFC=∠ODC=90°即可.
證明:連接OF,OC.
∵四邊形ABCD是矩形,
∴AD∥BC,AD=BC,∠ADC=90°.
∵E為BC邊的中點,AO=DO,
∴AO=EC,AO∥EC,
∴四邊形OAEC是平行四邊形,∴AE∥OC,∴∠DOC=∠OAF,∠FOC=∠OFA.
∵OA=OF,∴∠OAF=∠OFA,∴∠DOC=∠FOC.
∵在△ODC和△OFC中,
OD=OF,∠DOC=∠FOC,OC=OC,
∴△ODC≌△OFC(SAS),
∴∠OFC=∠ODC=90°,
∴OF⊥CF,
∴CF與⊙O相切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:如圖1和2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點E、F分別在BC、CD上,∠EAF=45°.
①如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,則能證得EF=BE+DF,請寫出推理過程;
②如圖2,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足數(shù)量關(guān)系 時,仍有EF=BE+DF;
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2,點D、E均在邊BC上,且∠DAE=45°.若BD=1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,其中CA=CB,四邊形CDEF是正方形,連結(jié)AF、BD.
(1)觀察圖形,猜想AF與BD之間有怎樣的關(guān)系,并證明你的猜想;
(2)若將正方形CDEF繞點C按順時針方向旋轉(zhuǎn),使正方形CDEF的一邊落在△ABC的內(nèi)部,請你畫出一個變換后的圖形,并對照已知圖形標(biāo)記字母,題(1)中猜想的結(jié)論是否仍然成立?若成立,直接寫出結(jié)論,不必證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日,是第23個世界讀書日.為了推進中華傳統(tǒng)文化教育,營造濃厚的讀書氛圍,我市某學(xué)校舉辦了“讓讀書成為習(xí)慣,讓書香溢病校園”主題活動.為了解學(xué)生每周閱讀時間,該校隨機抽取了部分學(xué)生進行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱詼時間(單位:小時)分成了組, ,下圖是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.請你結(jié)合圖中所給信息解答下列問題:
(1)這次隨機抽取了 名學(xué)生進行調(diào)查;
(2)補全頻數(shù)分布直方圖;
(3)計算扇形統(tǒng)計圖中扇形的圓心角的度數(shù);
(4)若該校共有名學(xué)生,請你估計每周閱讀時間不足小時的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括點O、B),作MN⊥DM,垂足為M,交∠CBE的平分線于點N.
(1)寫出點C的坐標(biāo);
(2)求證:MD=MN;
(3)連接DN交BC于點F,連接FM,下列兩個結(jié)論:①FM的長度不變;②MN平分∠FMB,其中只有一個結(jié)論是正確的,請你指出正確的結(jié)論,并給出證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.點P從點A出發(fā),以5cm/s的速度沿AC向終點C勻速移動.過點P作PQ⊥AB,垂足為點Q,以PQ為邊作正方形PQMN,點M在AB邊上,連接CN.設(shè)點P移動的時間為t(s).
(1)PQ=______;(用含t的代數(shù)式表示)
(2)當(dāng)點N分別滿足下列條件時,求出相應(yīng)的t的值;①點C,N,M在同一條直線上;②點N落在BC邊上;
(3)當(dāng)△PCN為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com