【題目】如圖,AB是O的直徑,C是O上一點,D在AB的延長線上,且BCD=A.

(1)求證:CD是O的切線;

(2)若O的半徑為3,CD=4,求BD的長.

【答案】(1)證明見解析(2)2

【解析】

試題分析:(1)連接OC,由AB是O的直徑可得出ACB=90°,即ACO+OCB=90°,由等腰三角形的性質結合BCD=A,即可得出OCD=90°,即CD是O的切線;

(2)在RtOCD中,由勾股定理可求出OD的值,進而可得出BD的長.

試題解析:(1)如圖,連接OC.

AB是O的直徑,C是O上一點,

∴∠ACB=90°,即ACO+OCB=90°

OA=OC,BCD=A,

∴∠ACO=A=BCD,

∴∠BCD+OCB=90°,即OCD=90°,

CD是O的切線.

(2)在RtOCD中,OCD=90°,OC=3,CD=4,

OD==5,

BD=ODOB=53=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.

(1)求證:△AEF≌△BEC;

(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;

(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺上.向內(nèi)放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點到底面的距離DC16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-1,0),B(1,0),Cy軸正半軸上一點,點D為第三象限一動點,CDABF,且∠ADB=2BAC

(1)求證:∠ADB與∠ACB互補;

(2)求證:CD平分∠ADB

(3)若在D點運動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在長方形ABCD中,將ABE沿著AE折疊至AEF的位置,點F在對角線AC上,若BE=3,EC=5,則線段CD的長是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,EBC邊的中點,連接AE,以AD為直徑的⊙OAE于點F,連接CF.求證:CF⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角ABC中,∠A=60°,∠ACB=45°,以BC為弦作O,交AC于點D,OD與BC交于點E,若AB與O相切,則下列結論:

BOD=90°;②DOAB;③CD=ADBDE∽△BCD;

正確的有(  )

A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=8,cosA=,DAB邊的中點,EAC邊上一點,聯(lián)結DE,過點DDFDEBC邊于點F,聯(lián)結EF

1)如圖1,當DEAC時,求EF的長;

2)如圖2,當點EAC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;

3)如圖3,聯(lián)結CDEF于點Q,當CQF是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線 y=x2x與x軸交于A、B、兩點(點A在點B的左側),與y軸交于點C.

(1)判斷ABC形狀,并說明理由.

(2)在拋物線第四象限上有一點,它關于x軸的對稱點記為點P,點M是直線BC上的一動點,當PBC的面積最大時,求PM+MC的最小值;

(3)如圖2,點K為拋物線的頂點,點D在拋物線對稱軸上且縱坐標為,對稱軸右側的拋物線上有一動點E,過點E作EHCK,交對稱軸于點H,延長HE至點F,使得EF=,在平面內(nèi)找一點Q,使得以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸,請問是否存在這樣的點Q,若存在請直接寫出點E的橫坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案