【題目】已知:在O中,直徑AB4,點(diǎn)P、Q均在O上,且∠BAP60°,∠BAQ30°,則弦PQ的長(zhǎng)為_____

【答案】24

【解析】

當(dāng)點(diǎn)PQAB的同側(cè),如圖1,連接OPOQ、PQ,先計(jì)算出∠PAQ30°,根據(jù)圓周角定理得到∠POQ60°,則可判斷△OPQ為等邊三角形,從而得到PQOP2;當(dāng)點(diǎn)PQAB的同側(cè),如圖1,連接PQ,先計(jì)算出∠PAQ90°,根據(jù)圓周角定理得到PQ為直徑,從而得到PQ4

解:當(dāng)點(diǎn)PQAB的同側(cè),如圖1,連接OP、OQ、PQ,

∵∠BAP60°,∠BAQ30°

∴∠PAQ30°,

∴∠POQ2PAQ2×30°60°

∴△OPQ為等邊三角形,

PQOP2;

當(dāng)點(diǎn)PQAB的同側(cè),如圖1,連接PQ,

∵∠BAP60°,∠BAQ30°

∴∠PAQ90°,

PQ為直徑,

PQ4,

綜上所述,PQ的長(zhǎng)為24

故答案為24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,頂點(diǎn)為點(diǎn),拋物線與軸交于、點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)

1)若拋物線經(jīng)過(guò)點(diǎn)時(shí),求此時(shí)拋物線的解析式;

2)直線與拋物線交于、兩點(diǎn),若,請(qǐng)求出的取值范圍;

3)如圖,若直線軸于點(diǎn),請(qǐng)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買(mǎi)了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買(mǎi)該花卉20.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣(mài)出25.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣(mài)出1.

1)該花卉每盆批發(fā)價(jià)是多少元?

2)若每天所得的銷(xiāo)售利潤(rùn)為200元時(shí),且銷(xiāo)量盡可能大,該花卉每盆售價(jià)是多少元?

3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過(guò)5元,問(wèn)該花卉一天最大的銷(xiāo)售利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,ACO的直徑,ADO的切線.點(diǎn)E在直徑AC上,連接EDO于點(diǎn)B,連接AB,且ABBD

(1)求證:ABBE;

(2)O的半徑長(zhǎng)為5,AB6,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形菜園(矩形ABCD),墻長(zhǎng)為22m,這個(gè)矩形的長(zhǎng)ABxm,菜園的面積為Sm2,且ABAD

1)求Sx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

2)若要圍建的菜園為100m2時(shí),求該萊園的長(zhǎng).

3)當(dāng)該菜園的長(zhǎng)為多少m時(shí),菜園的面積最大?最大面積是多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PBO的切線,AB為切點(diǎn),ACO的直徑.

1)若∠BAC=25°,求∠P的度數(shù);

2)若∠P=60°,PA=2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與x軸交于點(diǎn)A(﹣20)、B4,0),與y軸交于點(diǎn)C,且OC2OA

1)該拋物線的解析式為   ;

2)直線ykx+lk0)與y軸交于點(diǎn)D,與直線BC交于點(diǎn)M,與拋物線上直線BC上方部分交于點(diǎn)P,設(shè)m,求m的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)DP為(2)中求出的點(diǎn),點(diǎn)Qx軸的一個(gè)動(dòng)點(diǎn),點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)P、D、QN為頂點(diǎn)的四邊形為矩形時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,∠ACB=30°,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到DEC,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、E,點(diǎn)F是邊AC中點(diǎn),①BCE是等邊三角形,②DE=BF,③ABC≌△CFD,④四邊形BEDF是平行四邊形.則其中正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案