【題目】完成下面的證明:已知,如圖,ABCDGH,EG平分∠BEF,FG平分∠EFD,求證:∠EGF=90°.

【答案】見解析

【解析】

首先由平行線的性質(zhì)得出∠1=3,∠2=4,∠BEF+EFD=180°,再由EG平分∠BEFFG平分∠EFD得出∠1+2=90°,然后通過等量代換證出∠EGF=90°

證明∵HGAB(已知)

∴∠1=3 (兩直線平行、內(nèi)錯角相等)

又∵HGCD(已知)

∴∠2=4

ABCD(已知)

∴∠BEF+EFD=180°(兩直線平行、同旁內(nèi)角互補)

又∵EG平分∠BEFFG平分∠EFD
∴∠1=BEF,∠2=EFD

∴∠1+2=(∠BEF+EFD),

∴∠1+2=90°

∴∠3+4=90° (等量代換),

即∠EGF=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個“東方時尚島、海上新溫州”.為了解溫州市民對甌江口新區(qū)的關注情況,某學校數(shù)學興趣小組隨機采訪部分溫州市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關注情況

頻數(shù)

頻率

A.高度關注

m

0.1

B.一般關注

100

0.5

C.不關注

30

n

D.不知道

50

0.25


(1)根據(jù)上述統(tǒng)計表可得此次采訪的人數(shù)為人;m= , n=
(2)根據(jù)以上信息補全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,估計25000名溫州市民中高度關注甌江口新區(qū)的市民約人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠BAD125°,∠B=∠D90°,在BC、CD上分別找一點MN,當三角形AMN周長最小時,∠MAN的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】愛動腦筋的小明同學在買一雙新的運動鞋時,發(fā)現(xiàn)了一個有趣現(xiàn)象:即鞋子的碼數(shù)y(碼)與鞋子的長xcm)之間存在著某種聯(lián)系.經(jīng)過收集數(shù)據(jù),得到如表:

鞋長xcm

22

23

24

25

26

碼數(shù)y(碼)

34

36

38

40

42

請你替小明解決下列問題:

1)當鞋長為28cm時,鞋子的碼數(shù)是多少?

2)寫出yx之間的關系式;

3)已知姚明的鞋子穿52碼時,則他穿的鞋長是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )

A.8
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為積極響應南孔圣地,衢州有禮城市品牌建設,在每周五下午第三節(jié)課開展了豐富多彩的走班選課活動.其中綜合實踐類共開設了禮行”“禮知”“禮思”“禮藝”“禮源等五門課程,要求全校學生必須參與其中一門課程.為了解學生參與綜合實踐類課程活動情況,隨機抽取了部分學生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)請問被隨機抽取的學生共有多少名?并補全條形統(tǒng)計圖.

2)在扇形統(tǒng)計圖中,求選擇禮行課程的學生人數(shù)所對應的扇形圓心角的度數(shù).

3)若該校共有學生1200人,估計其中參與禮源課程的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加校運動會,有以下5個項目可供選擇:
徑賽項目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項目:跳遠,跳高(分別用B1、B2表示).
該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.

(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列說法中:①過一點有且只有一條直線與已知直線平行;②-0.90.81的平方根;③若在平面直角坐標系中直線垂直于軸,則直線上所有的點的橫坐標相同;④是一個負數(shù);⑤0的相反數(shù)和倒數(shù)都是0;⑥;⑦;⑧全體有理數(shù)和數(shù)軸上的點一一對應.以上真命題的序號是__________

查看答案和解析>>

同步練習冊答案