【題目】如圖(1),在△ABC中,AB=AC,∠A=36°.
(1)直接寫(xiě)出∠ABC的度數(shù);
(2)如圖(2),BD是△ABC中∠ABC的平分線.
①找出圖中所有等腰三角形(等腰三角形ABC除外),并選其中一個(gè)寫(xiě)出推理過(guò)程;
②在直線BC上是否存在點(diǎn)P,使△CDP是以CD為一腰的等腰三角形?如果存在,請(qǐng)?jiān)趫D(3)中畫(huà)出滿足條件的所有的點(diǎn)P,并直接寫(xiě)出相應(yīng)的∠CPD的度數(shù);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)72°;(2)①△ADB、△BCD是等腰三角形,理由詳見(jiàn)解析;②存在3個(gè)點(diǎn)P,使得△CDP是等腰三角形,∠CPD的度數(shù)詳見(jiàn)解析.
【解析】
(1)由已知條件結(jié)合等腰三角形的性質(zhì)及三角形內(nèi)角和進(jìn)行求解;
(2)①等腰三角形的判定,BD是△ABC中∠ABC的平分線.可求出各個(gè)角的大小再進(jìn)行判斷;
②使△CDP為等腰三角形,則可能是CD=CP,DP=CD,因?yàn)椤?/span>C=∠BDC,所以不可能PC=PD.
解:(1)∵AB=AC,∠A=36°,∴∠ABC= (180°∠A)==72°;
(2)①如圖(2),△ADB、△BCD是等腰三角形.
說(shuō)明△ADB是等腰三角形,理由:由(1)得:∠ABC=72°,
又∵BD是∠ABC的平分線,∴∠ABD=∠ABC=36°,
又∵∠A=36°,∴∠A=∠ABD,
∴AD=BD,即△ADB是等腰三角形;
說(shuō)明△BCD是等腰三角形,理由:
∵∠A=36°,AB=AC,
∴∠C=∠ABC=(180°-36°)=72°
又∵BD是∠ABC的平分線,
∴∠DBC=∠ABC=36°,
∴∠BDC=180°-∠C-∠DBC=180°-72°-36°=72°,
∴∠C=∠BDC,
∴BD=BC,即△BCD是等腰三角形;
②存在3個(gè)點(diǎn)P,使得△CDP是等腰三角形.如圖:
當(dāng)以∠CDP為頂角,CD為一腰時(shí),∠CPD=72°;
當(dāng)以∠DCP為頂角,CD為一腰時(shí),存在兩點(diǎn)P:
一點(diǎn)在線段BC延長(zhǎng)線上,此時(shí)∠CPD=36°;
一點(diǎn)在線段BC上,此時(shí)∠CPD=54°.
故答案為:(1)72°;(2)①△ADB、△BCD是等腰三角形,理由詳見(jiàn)解析;②存在3個(gè)點(diǎn)P,使得△CDP是等腰三角形,∠CPD的度數(shù)詳見(jiàn)解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖兩個(gè)4×4網(wǎng)格都是由16個(gè)邊長(zhǎng)為1的小正方形組成.
(1)圖①中的陰影正方形的頂點(diǎn)在網(wǎng)格的格點(diǎn)上,這個(gè)陰影正方形的面積為 ,若這個(gè)正方形的邊長(zhǎng)為,則= ;
(2)請(qǐng)?jiān)趫D②中畫(huà)出面積是5的正方形,使它的頂點(diǎn)在網(wǎng)格的格點(diǎn)上.若這個(gè)正方形的邊長(zhǎng)為,則= ;
(3)請(qǐng)你利用以上結(jié)論,在 圖③ 的數(shù)軸上精確畫(huà)出實(shí)數(shù)和-,利用數(shù)軸可得 .(填“﹥”或“﹤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店準(zhǔn)備銷售甲、乙兩種商品共80件,已知甲種商品進(jìn)貨價(jià)為每件70元,乙種商品進(jìn)貨價(jià)為每件35元,在定價(jià)銷售時(shí),2件甲種商品與3件乙種商品的售價(jià)相同,3件甲種商品比2件乙商品的售價(jià)多150元.
(1)每件甲商品與每件乙商品的售價(jià)分別是多少元?
(2)若甲、乙兩種商品的進(jìn)貨總投入不超過(guò)4200元,則至多進(jìn)貨甲商品多少件?
(3)若這批商品全部售完,該商店至少盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記作,即當(dāng)x為非負(fù)整數(shù)時(shí),若,則.反之,當(dāng)n為非負(fù)整數(shù)時(shí),若,則,如,,,……試解決下列問(wèn)題:
(1)填空:①________.②若,則實(shí)數(shù)x的取值范圍為________;
(2)求滿足的所有非負(fù)實(shí)數(shù)x的值;
(3)若關(guān)于x的不等式組的整數(shù)解恰好有3個(gè),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分別是邊AB,AC的中點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿DE方向運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥BC于Q,過(guò)點(diǎn)Q作QR∥BA交AC于R,當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)P停止運(yùn)動(dòng).設(shè)BQ=x,QR=y.
(1)求點(diǎn)D到BC的距離DH的長(zhǎng);
(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(3)是否存在點(diǎn)P,使△PQR為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)
(1)先作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1,再把△A1B1C1向上平移4個(gè)單位長(zhǎng)度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關(guān)于某點(diǎn)成中心對(duì)稱?若是,直接寫(xiě)出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)跟進(jìn)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)本次抽測(cè)的男生人數(shù)為 ,圖①中m的值為 ;
(Ⅱ)求本次抽測(cè)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),根據(jù)樣本數(shù)據(jù),估計(jì)該校350名九年級(jí)男生中有多少人體能達(dá)標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整:
(1)自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)數(shù)值:
①寫(xiě)出m的值為 ;
②在平面直角坐標(biāo)系中,描出了以表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)當(dāng)時(shí),直接寫(xiě)出x的取值范圍為 .
(4)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AEC和△DFB中,∠E=∠F,點(diǎn)A,B,C,D在同一直線上,有如下三個(gè)關(guān)系式:①AE∥DF,②AB=CD,③CE=BF.
(1)請(qǐng)用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫(xiě)出你認(rèn)為正確的所有命題(用序號(hào)寫(xiě)出命題書(shū)寫(xiě)形式:“如果,,那么”);
(2)選擇(1)中你寫(xiě)出的一個(gè)命題,說(shuō)明它正確的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com