【題目】某商店準備銷售甲、乙兩種商品共80件,已知甲種商品進貨價為每件70元,乙種商品進貨價為每件35元,在定價銷售時,2件甲種商品與3件乙種商品的售價相同,3件甲種商品比2件乙商品的售價多150元.
(1)每件甲商品與每件乙商品的售價分別是多少元?
(2)若甲、乙兩種商品的進貨總投入不超過4200元,則至多進貨甲商品多少件?
(3)若這批商品全部售完,該商店至少盈利多少元?
【答案】(1)90,60(2)a≤40(3)當b=40時,M取得最小值1800元
【解析】
(1)可設甲種商品的銷售單價x元,乙種商品的銷售單價y元,根據等量關系:①2件甲種商品與3件乙種商品的銷售收入相同,②3件甲種商品比2件乙種商品的銷售收入多150元,列出方程組求解即可;
(2)可設銷售甲種商品a萬件,根據甲、乙兩種商品的銷售總收入不超過4200元,列出不等式求解即可;
(3)設進貨乙商品b件,利潤為M元.可得M與b的關系式,從而可得結論.
(1)設每件甲商品與每件乙商品的售價分別是x、y元。
解得
(2)設進貨甲商品a件,則乙商品(80-a)件.
70a+35(80-a)≤4200 解得a≤40
(3)設進貨乙商品b件,利潤為M元.
由(2)得a≤40,則b≥40
M=(90-70)(80-b)+(60-35)b=5b+1600
∵5>0
∴M隨b的增大而增大
∴當b=40時,M取得最小值5×40+1600=1800元
科目:初中數學 來源: 題型:
【題目】下表是中國電信兩種“套餐”計費方式.(月基本費固定收,主叫不超過主叫時間,流量不超上網流量不再收取額外費用費,主叫超時和上網超流量部分加收超時費和超流量費)
月基本費/元 | 主叫通話/分鐘 | 上網流量/MB | 接聽 | 主叫超時(元/分鐘) | 超出流量(元/MB) | |
套餐1 | 49 | 200 | 500 | 免費 | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免費 | 0.15 | 0.2 |
(1)6月小王主叫通話時間220分鐘,上網流量800MB.按套餐1計費需 元,按套餐2計費需 元;
若他按套餐2計費需129元,主叫通話時間為240分鐘,則他上網使用了 MB流量;
(2)若上網流量為540MB,是否存在某主叫通話時間(分鐘),按套餐1和套餐2的計費相等?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2-2mx+m2-1.
(1)當二次函數的圖象經過坐標原點O(0,0)時,求二次函數的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1) 如圖1,點E為線段AB的中點,連接DE、CE.若AB=4,求線段EC的長
(2) 如圖2,M為線段AC上一點(不與A、C重合),以AM為邊向上構造等邊三角形AMN,線段MN與AD交于點G,連接NC、DM,Q為線段NC的中點,連接DQ、MQ,判斷DM與DQ的數量關系,并證明你的結論
(3) 在(2)的條件下,若AC=,請你直接寫出DM+CN的最小值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學生小明、小華為了解本校八年級學生每周上網的時間,各自進行了抽樣調查.小明調查了八年級信息技術興趣小組中40名學生每周上網的時間,算得這些學生平均每周上網時間為2.5h;小華從全體320名八年級學生名單中隨機抽取了40名學生,調查了他們每周上網的時間,算得這些學生平均每周上網時間為1.2h.小明與小華整理各自樣本數據,如表所示.
時間段(h/周) | 小明抽樣人數 | 小華抽樣人數 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請根據上述信息,回答下列問題:
(1)你認為哪位學生抽取的樣本具有代表性?_____.
估計該校全體八年級學生平均每周上網時間為_____h;
(2)在具有代表性的樣本中,中位數所在的時間段是_____h/周;
(3)專家建議每周上網2h以上(含2h)的同學應適當減少上網的時間,根據具有代表性的樣本估計,該校全體八年級學生中有多少名學生應適當減少上網的時間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com