【題目】命題“內(nèi)錯(cuò)角相等”的逆命題是__命題.(填“真”或“假”)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,給正五邊形的頂點(diǎn)依次編號(hào)為1,2,3,4,5.若從某一頂點(diǎn)開(kāi)始,沿正五邊形的邊順時(shí)針?lè)较蛐凶撸旤c(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長(zhǎng),則稱這種走法為一次“移位”.如:小宇在編號(hào)為3的頂點(diǎn)上時(shí),那么他應(yīng)走3個(gè)邊長(zhǎng),即從3→4→5→1為第一次“移位”,這時(shí)他到達(dá)編號(hào)為1的頂點(diǎn);然后從1→2為第二次“移位”.若小宇從編號(hào)為2的頂點(diǎn)開(kāi)始,第81次“移位”后,則他所處頂點(diǎn)的編號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),則根據(jù)勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如圖(2)和(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列條件,只能畫出唯一的△ABC的是( 。
A. AB=3 BC=4 B. AB=4 BC=3 ∠A=30°
C. ∠A=60°∠B=45° AB=4 D. ∠C=60°AB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列比較大小正確的是( )
A.﹣12>﹣11
B.|﹣6|=﹣(﹣6)??
C.﹣(﹣31)<+(﹣31)
D.﹣ >0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 下列長(zhǎng)度的三條線段,能組成三角形的是( )
A.3cm,5cm,7cmB.7cm,7cm,14cmC.4cm,5cm,9cmD.2cm,1cm,3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上表示-2的點(diǎn)先向右移動(dòng)3個(gè)單位,再向左移動(dòng)5個(gè)單位,則此時(shí)該點(diǎn)表示的數(shù)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=x2+bx+c的頂點(diǎn)坐標(biāo)為(﹣1,1),直線1的解析式為y2=2mx+3m2+4nm+4n2,且l與x軸、y軸分別交于A、B兩點(diǎn).
(1)求b、c的值;
(2)若函數(shù)y1+y2的圖象與x軸始終有公共點(diǎn),求直線l的解析式;
(3)點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使△PAB為等腰角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=30°,AB=AC,以B為圓心,BC長(zhǎng)為半徑畫弧,交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求∠ABD的度數(shù);
(2)當(dāng)BC=時(shí),求線段AE,AD與圍成陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com