【題目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),則根據(jù)勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如圖(2)和(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
【答案】見解析
【解析】
解:若△ABC為銳角三角形,則有a2+b2>c2,若△ABC為鈍角三角形,∠C為鈍角,則有a2+b2<c2.
證明:(1)當(dāng)△ABC為銳角三角形時,過點A作AD⊥CB,垂足為D,設(shè)CD=x,則有DB=a-x.
根據(jù)勾股定理,得b2-x2=c2-(a-x)2,即b2-x2=c2-a2+2ax-x2.
∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0,
∴a2+b2>c2.
(2)當(dāng)△ABC為鈍角三角形時,過B作BD⊥AC,交AC的延長線于點D,設(shè)CD=x,則BD2=a2-x2.根據(jù)勾股定理,得(b+x)2+(a2-x2)=c2,∴a2+b2+2bx=c2.
∵b>0,x>0,∴2bx>0,∴a2+b2<c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( )
A. 2a2+a=3a3 B. (﹣a)2÷a=a C. (﹣a)3a2=﹣a6 D. (2a2)3=6a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線L同側(cè)有A,B,C三點,若過A,B的直線L1和過B,C的直線L2都與L平行,則A,B,C三點 , 理論根據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①因為∠1與∠2是對頂角,所以∠1=∠2;②因為∠1與∠2是鄰補(bǔ)角,所以∠1=∠2;③因為∠1與∠2不是對頂角,所以∠1≠∠2;④因為∠1與∠2不是鄰補(bǔ)角,所以∠1+∠2≠180°.
其中正確的有(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,
(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;② .
(2)如果∠AOD=40°,則①∠BOC=;②OP是∠BOC的平分線,所以∠COP=度;③求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師給同學(xué)們出了一道化簡的題目:2(2x2y+x)﹣3(x2y﹣2x),小亮同學(xué)的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.請你指出小亮的做法正確嗎?如果不正確,請指出錯在哪?并將正確的化簡過程寫下來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】義務(wù)教育均衡發(fā)展是一種新的教育發(fā)展觀,是解決我國目前教育問題的新舉措.其最終目標(biāo),就是要合理配置教育資源,辦好每一所學(xué)校,教好每一個學(xué)生,實現(xiàn)教育公平.我們縣級政府為推進(jìn)義務(wù)教育均衡發(fā)展工作的評估,今年預(yù)算辦學(xué)經(jīng)費約為3億5千萬,請你用科學(xué)記數(shù)法表示應(yīng)是( )
A.3.5×108
B.3.5×109
C.35×108
D.0.35×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品的進(jìn)價為 300 元,售價為 550 元.后來由于該商品積壓,商店準(zhǔn)備打折銷售, 但要保證利潤率為 10%,則該商品可打_____折.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com