【題目】如圖,邊長為 7 的正方形 OABC 放置在平面直角坐標(biāo)系中,動點(diǎn) P 從點(diǎn) C 出發(fā),以 每秒 1 個單位的速度向 O 運(yùn)動,點(diǎn) Q 從點(diǎn) O 同時出發(fā),以每秒 1 個單位的速度向點(diǎn) A 運(yùn)動,到達(dá)端點(diǎn)即停止運(yùn)動,運(yùn)動時間為 t 秒,連 PQ、BPBQ

1)寫出 B 點(diǎn)的坐標(biāo);

2)填寫下表:

時間 t(單位:秒)

1

2

3

4

5

6

OP 的長度

OQ 的長度

PQ 的長度

四邊形 OPBQ 的面積

根據(jù)你所填數(shù)據(jù),請描述線段 PQ 的長度的變化規(guī)律?并猜測 PQ 長度的最小值.

根據(jù)你所填數(shù)據(jù),請問四邊形 OPBQ 的面積是否會發(fā)生變化?并證明你的論斷;

3)設(shè)點(diǎn) M、N 分別是 BP、BQ 的中點(diǎn),寫出點(diǎn) M,N 的坐標(biāo),是否存在經(jīng)過 M, N 兩點(diǎn)的反比例函數(shù)?如果存在,求出 t 的值;如果不存在,說明理由.

【答案】1B77);(2)表格填寫見解析;①,PQ長度的最小值是;

②四邊形OPBQ的面積不會發(fā)生變化;(3t=3.5存在經(jīng)過M,N兩點(diǎn)的反比例函數(shù).

【解析】

通過寫點(diǎn)的坐標(biāo),填表,搞清楚本題的基本數(shù)量關(guān)系,每個量的變化規(guī)律,然后進(jìn)行猜想;用運(yùn)動時間t,表示線段OP,OQ,CPAQ的長度,運(yùn)用割補(bǔ)法求四邊形OPBQ的面積,由中位線定理得點(diǎn)M3.5,7-),N,3.5),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)是 ,利用該等式求t值.

解:(1)∵在正方形 OABCOA=OC=7

B7,7

(2)表格填寫如下:

①線段PQ的長度的變化規(guī)律是先減小再增大,PQ長度的最小值是 .理由如下:

RtPOQ中,OP=7-t,OQ=t

PQ2=(7-t)2+t2=2t2-14t+49=

∴當(dāng) PQ2最取得最小值為

∴此時

②根據(jù)所填數(shù)據(jù),四邊形OPBQ的面積不會發(fā)生變化;

=24.5

∴四邊形OPBQ的面積不會發(fā)生變化.

(3)點(diǎn)M(3.5,7 ),N( ,3.5),

當(dāng)3.5(7)=×3.5時,則t=3.5,

∴當(dāng)t=3.5存在經(jīng)過M,N兩點(diǎn)的反比例函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解決經(jīng)過平面上的100個點(diǎn)中的任意兩點(diǎn)最多能畫出多少條直線這個問題,數(shù)學(xué)課外興趣小組的同學(xué)們討論得出如下方法:當(dāng)時,畫出最多直線的條數(shù)分別是:

過兩點(diǎn)畫一條直線,三點(diǎn)在原來的基礎(chǔ)上增加一個點(diǎn),它與原來兩點(diǎn)分別畫一條直線,即增加兩條直線,以此類推,平面上的10個點(diǎn)最多能畫出條直線.

請你比照上述方法,解決下列問題:(要求作圖分析)

1)平面上的20條直線最多有多少個交點(diǎn)?

2)平面上的100條直線最多可以把平面分成多少個部分?平面上條直線最多可以把平面分成多少個部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個多項式A=9xy7xyx2,B=3xy5xyx7

1)求A3B;

2)若要使A3B的值與x的取值無關(guān),試求y的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFC+BDC=180°,DEF=B.

(1)求證:∠ADE=DEF;

(2)判定 DE BC 的位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等腰RtABC,使BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步推廣陽光體育大課間活動,某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動項目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:

1)請計算本次調(diào)查中喜歡跑步的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整;

2)隨機(jī)抽取了5名喜歡跑步的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的頂點(diǎn)A、B坐標(biāo)分別為(1,1)、(3,1),若把等邊△ABC先沿x軸翻折,再向左平移1個單位”為第一次変換,則這樣連續(xù)經(jīng)過2017次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:用邊長相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?

問題探究:為了解決上述數(shù)學(xué)問題,我們采用分類討論的思想方法去進(jìn)行探究.

探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?

第一類:選正三角形.因?yàn)檎切蔚拿恳粋內(nèi)角是60°,所以在鑲嵌平面時,圍繞某一點(diǎn)有6個正三角形的內(nèi)角可以拼成一個周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.

第二類:選正方形.因?yàn)檎叫蔚拿恳粋內(nèi)角是90°,所以在鑲嵌平面時,圍繞某一點(diǎn)有4個正方形的內(nèi)角可以拼成一個周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.

第三類:選正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)

探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?

第四類:選正三角形和正方形

在鑲嵌平面時,設(shè)圍繞某一點(diǎn)有x個正三角形和y個正方形的內(nèi)角可以拼成個周角.根據(jù)題意,可得方程

60x+90y360

整理,得2x+3y12

我們可以找到唯一組適合方程的正整數(shù)解為.

鑲嵌平面時,在一個頂點(diǎn)周圍圍繞著3個正三角形和2個正方形的內(nèi)角可以拼成一個周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌

第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)

第六類:選正方形和正六邊形,(不寫探究過程,只寫出結(jié)論)

探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?

第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結(jié)論),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長為( 。

A. B. 3 C. 2 D. 2

查看答案和解析>>

同步練習(xí)冊答案