【題目】如圖,在菱形ABCD中,AB2,∠D120°,將菱形翻折,使點A落在邊CD的中點E處,折痕交邊ADAB于點G,F,則AF的長為___

【答案】

【解析】

過點EEHADH,ENABN,過點AAMCDM,根據(jù)勾股定理可求AG的長度,可證AMEN為矩形,即NA=ME=2,即B,N重合,再根據(jù)勾股定理可求EF的長,由折疊的性質(zhì)可得解.

過點EENABN,過點AAMCDM,如圖

ABCD是菱形,

ABCD,AD=AB=CD=AB=2

∵∠D120°,

∴∠ADM=BAD=HDE=60°,

RtAMD中,AD=2,AMDM,∠ADM=60°

MD=1,AM=,

ABCDAMEN

AMEN是平行四邊形且AMCD

AMEN是矩形

AN=ME=1+1=2,(即NB重合)

AM=EN=

RtFBE中,EF2=EN2+FB 2

EF2=2-EF2+3

EF=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別從AB兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達B地后,乙繼續(xù)前行.設出發(fā)x h后,兩人相距y km,圖中折線表示從兩人出發(fā)至乙到達A地的過程中yx之間的函數(shù)關(guān)系.

根據(jù)圖中信息,求:

1)點Q的坐標,并說明它的實際意義;

2)甲、乙兩人的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點D,E分別在邊AB,AC上,ADAE,連接DC,點M,PN分別為DE,DC,BC的中點.

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD8AB20,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,以為坐標原點建立直角堅標系,使點軸正半軸上,,,點邊的中點,拋物線的頂點是原點,且經(jīng)過

(1)填空:直線的解析式為 ;拋物線的解析式為

(2)現(xiàn)將該拋物線沿著線段移動,使其頂點始終在線段(包括點,),拋物線與軸的交點為,與邊的交點為;

①設的面積為,求的取值范圍;

②是否存在這樣的點,使四邊形為平行四邊形?如存在,求出此時拋物線的解析式;如不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在近期抗疫期間,某藥店銷售A、B兩種型號的口罩,已知銷售800A型和450B型的利潤為210元,銷售400A型和600B型的利潤為180元.

(1)求每只A型口罩和B型口罩的銷售利潤;

(2)該藥店計劃一次購進兩種型號的口罩共2000只,其中B型口罩的進貨量不超過A型口罩的3倍,設購進A型口罩x只,這2000只口罩的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該藥店購進A型、B型口罩各多少只,才能使銷售總利潤最大?

3)在銷售時,該藥店開始時將B型口罩提價100%,當收回成本后,為了讓利給消費者,決定把B型口罩的售價調(diào)整為進價的15%,求B型口罩降價的幅度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年,隨著電子產(chǎn)品的廣泛應用,學生的近視發(fā)生率出現(xiàn)低齡化趨勢,引起了相關(guān)部門的重視.某區(qū)為了了解在校學生的近視低齡化情況,對本區(qū)7-18歲在校近視學生進行了簡單的隨機抽樣調(diào)查,并繪制了以下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,回答下列問題:

1)這次抽樣調(diào)查中共調(diào)查了近視學生 人;

2)請補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中10-12歲部分的圓心角的度數(shù)是 ;

4)據(jù)統(tǒng)計,該區(qū)7-18歲在校學生近視人數(shù)約為10萬,請估計其中7-12歲的近視學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象交軸于和點,交軸負半軸于點,且,下列結(jié)論:①;②;③;④;

其中正確的結(jié)論個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,AB是直徑,AP是過點A的切線,點C上,點DAP上,且,延長DCAB于點E

1)求證:

2)若的半徑為5,求的長.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是等邊內(nèi)一點,,以點B為旋轉(zhuǎn)中心,將線段BO逆時針旋轉(zhuǎn)得到線段,連接,則下列結(jié)論:

可以由繞點B逆時針旋轉(zhuǎn)得到

②連接,則

其中正確的結(jié)論是____________

查看答案和解析>>

同步練習冊答案