【題目】如圖,已知△ABCCEABEBFACF

1)求證:△AFB∽△AEC;

2)求證:△AEFA∽△ABC;

3)若∠A=60°時(shí),求△AFE與△ABC面積之比.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

(1)AFB=∠AEC=90°,再加上A=∠A即可得證;

(2)AFB∽△AEC可得,繼而得到,再加上A=∠A利用兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似即可得;

(3)Rt△ACE,cosA=,可求得,再由AFE∽△ABC,利用相似三角形的面積比等于相似比的平方即可求得答案.

(1)CEABE,BFAC,

AFB=∠AEC=90°,

∵∠A=∠A

∴△AFB∽△AEC;

(2)(1)AFB∽△AEC,

,

∵∠A=∠A,

∴△AFE∽△ABC

(3)Rt△ACE,AEC=90°,∠A=60°,cosA=,

∵△AFE∽△ABC,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.

(1)求該拋物線的解析式;

(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求PBC周長(zhǎng)的最小值;

(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將如圖所示的牌面數(shù)字1、2、34的四張撲克牌背面朝上,洗勻后放在桌面上.

1)從中隨機(jī)抽出一張牌,牌面數(shù)字是奇數(shù)的概率是   ;

2)從中隨機(jī)抽出兩張牌,兩張牌牌面數(shù)字的和是6的概率是   ;

3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用樹狀圖或列表的方法求組成的兩位數(shù)恰好是3的倍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種成本為的水產(chǎn)品,若按銷售,一個(gè)月可售出,售價(jià)毎漲元,月銷售量就減少

寫出月銷售利潤(rùn)(元)與售價(jià)(元)之間的函數(shù)表達(dá)式;

當(dāng)售價(jià)定為多少元時(shí),該商店月銷售利潤(rùn)為元?

當(dāng)售價(jià)定為多少元時(shí)會(huì)獲得最大利潤(rùn)?求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=cx22cx3cc0),則下列說法不正確的是(    

A.對(duì)稱軸為直線x=1

B.x軸有兩個(gè)不同的交點(diǎn)

C.可能過原點(diǎn)

D.若(-4,y1)、(4,y2)是拋物線的兩點(diǎn),則y1y20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把一個(gè)直角三角尺ACB繞著30°角的頂點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合.

1三角尺旋轉(zhuǎn)了

2連接CD,試判斷CBD的形狀;

3BDC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,AC是對(duì)角線,E是平面內(nèi)一點(diǎn),且,過點(diǎn)C,且。連接AE、AF,MAF的中點(diǎn),作射線DMAE于點(diǎn)N.

1)如圖1,若點(diǎn)EF分別在BC,CD邊上。

求證:①;

2)如圖2,若點(diǎn)E在四邊形ABCD內(nèi),點(diǎn)F在直線BC的上方,求的和的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1

2x22x40

3

4)(x+3)(x1)=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年北疆承辦了世界園藝博覽會(huì),某商店為了抓住博覽會(huì)的商機(jī),決定購(gòu)買A.B兩種世園會(huì)紀(jì)念品,若購(gòu)進(jìn)A中紀(jì)念品20件,B種紀(jì)念品10件,需要2000元;若購(gòu)進(jìn)A中紀(jì)念品8件,B種紀(jì)念品6件,需要1100元.

(1)求購(gòu)進(jìn)A.B兩種紀(jì)念品每件各需要多少元?

(2)若該商店決定拿出10000元全部用來購(gòu)進(jìn)這兩種紀(jì)念品,考慮到市場(chǎng)需求,要求購(gòu)進(jìn)A種紀(jì)念品的數(shù)量不少于B種的6倍,且少于B種紀(jì)念品數(shù)量的8倍,設(shè)購(gòu)進(jìn)B種紀(jì)念品a件,則該商店共有幾種進(jìn)貨方案?

(3)在第(2)問的條件下,若銷售每件A種紀(jì)念品可獲利潤(rùn)30元,每件B種紀(jì)念品可獲利潤(rùn)40元,設(shè)總利潤(rùn)為y元,請(qǐng)寫出總利潤(rùn)y(元)與a(個(gè))的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤(rùn)最高時(shí)的進(jìn)貨方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案