【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡,騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.順風車行經(jīng)營的A型車2015年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.
(1)求今年6月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計劃7月份新進一批A型車和B型車共50輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
A、B兩種型號車的進貨和銷售價格如表:
A型車 | B型車 | |
進貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
【答案】
(1)
解:設去年A型車每輛x元,那么今年每輛(x+400)元,
根據(jù)題意得 ,
解之得x=1600,
經(jīng)檢驗,x=1600是方程的解.
答:今年A型車每輛2000元
(2)
解:設今年7月份進A型車m輛,則B型車(50﹣m)輛,獲得的總利潤為y元,
根據(jù)題意得50﹣m≤2m
解之得m≥ ,
∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,
∴y隨m 的增大而減小,
∴當m=17時,可以獲得最大利潤.
答:進貨方案是A型車17輛,B型車33輛
【解析】(1)設去年A型車每輛x元,那么今年每輛(x+400)元,列出方程即可解決問題.(2)設今年7月份進A型車m輛,則B型車(50﹣m)輛,獲得的總利潤為y元,先求出m的范圍,構建一次函數(shù),利用函數(shù)性質解決問題.本題考查一次函數(shù)的應用、分式方程等知識,解題的關鍵是設未知數(shù)列出方程解決問題,注意分式方程必須檢驗,學會構建一次函數(shù),利用一次函數(shù)性質解決實際問題中的最值問題,屬于中考常考題型.
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學,F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側,PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形
(1)求該拋物線的解析式;
(2)求點P的坐標;
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+2 =( +1)2].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1,l2交于點C.
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在l2上存在異于點C的另一點P,使得△ADP與△ADC面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,埃航MS804客機失事后,國家主席親自發(fā)電進行慰問,埃及政府出動了多艘艦船和飛機進行搜救,其中一艘潛艇在海面下500米的A點處測得俯角為45°的前下方海底有黑匣子信號發(fā)出,繼續(xù)沿原方向直線航行2000米后到達B點,在B處測得俯角為60°的前下方海底有黑匣子信號發(fā)出,求海底黑匣子C點距離海面的深度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,E、F兩點分別在AB、AD上,CE與BF相交于G點.若∠EBG=25°,∠GCB=20°,∠AEG=95°,則∠A的度數(shù)為何?( 。
A.95
B.100
C.105
D.110
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1在△ABC中,EF與AC交于點G,與BC的延長線交于點F,∠B=45°,
∠F=30°,∠CGF=70°,求∠A的度數(shù).
(2)利用三角板也能畫出一個角的平分線,畫法如下:①利用三角板在∠AOB的兩邊上分
別取OM=ON:②分別過點M、N畫OM、ON的垂線,交點為;③畫射線OP,所以射線OP為∠AOB的角平分線,請你評判這種作法的正確性并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ADF和△BCE中,∠A=∠B,點D,E,F(xiàn),C在同一直線上,有如下三個關系式:①.AD=BC;②.DE=CF;③.BE∥AF.
⑴.請用其中兩個關系式作為條件,另一個作為結論,寫出所有正確的結論.
⑵.選擇(1)中你寫出的一個正確結論,說明它正確的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足.下列結論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com