【題目】商場(chǎng)經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴(kuò)大銷量,5月份商場(chǎng)對(duì)這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價(jià);
(2)若4月份銷售這種童裝獲利8000元,6月全月商場(chǎng)進(jìn)行“六一兒童節(jié)”促銷活動(dòng).童裝在4月售價(jià)的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤(rùn)比4月的利潤(rùn)至少增長(zhǎng)25%?

【答案】
(1)解:設(shè)4月份的銷售單價(jià)為x,

由題意得, =50,

解得:x=200,

經(jīng)檢驗(yàn)x=200是原方程的解.

答:4月份的銷售單價(jià)為200元.


(2)解:4月份的銷量為100件,則每件衣服的成本= =120(元),

6月份的售價(jià)為200×0.8=160(元),

設(shè)銷量為y件,

200×0.8y﹣120y≥8000(1+25%),

解得:y≥250,

∴銷量至少為250件,才能保證6月的利潤(rùn)比4月的利潤(rùn)至少增長(zhǎng)25%.


【解析】(1)設(shè)4月份的銷售單價(jià)為x,表示出4月份及5月份的銷售量,根據(jù)5月份比4月份銷量增加50件可得出方程,解出即可;(2)利用(1)中所求得出每件衣服的成本,再由6月的利潤(rùn)比4月的利潤(rùn)至少增長(zhǎng)25%,可得出不等式,解出即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解分式方程的應(yīng)用(列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長(zhǎng);
(2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點(diǎn),把△ABC沿著直線DE折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是B′.

(1)如圖(1),如果點(diǎn)B′和頂點(diǎn)A重合,求CE的長(zhǎng);
(2)如圖(2),如果點(diǎn)B′和落在AC的中點(diǎn)上,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△CEF是兩個(gè)不等的等邊三角形,且有一個(gè)公共頂點(diǎn)C,連接AF和BE,線段AF和BE有怎樣的大小關(guān)系?證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D是BC上的一點(diǎn),AB=10,BD=6,AD=8,AC=17.

(1)判斷AD與BC的位置關(guān)系,并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在AC上,點(diǎn)E在BC的延長(zhǎng)線上,且BD=DE.

(1)若點(diǎn)D是AC的中點(diǎn),如圖1,求證:AD=CE.
(2)若點(diǎn)D不是AC的中點(diǎn),如圖2,試判斷AD與CE的數(shù)量關(guān)系,并證明你的結(jié)論:(提示:過點(diǎn)D作DF∥BC,交AB于點(diǎn)F.)
(3)若點(diǎn)D在線段AC的延長(zhǎng)線上,(2)中的結(jié)論是否仍成立?如果成立,給予證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),△CDE是等邊三角形,連接EB、EA,延長(zhǎng)BE交邊AD點(diǎn)于點(diǎn)F.

(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線.
(2)過點(diǎn)E作EH⊥AB于點(diǎn)H,求證:CD=HF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC與等腰△ADE的頂點(diǎn)A重合,AD=AE,∠DAE=30°,將△ADE繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BD=CE時(shí),∠BAD的大小可以是

查看答案和解析>>

同步練習(xí)冊(cè)答案