精英家教網 > 初中數學 > 題目詳情

【題目】如圖,以半圓中的一條弦BC(非直徑)為對稱軸將弧BC折疊后與直徑AB交于點D,若,且AB10,則CB的長為_____

【答案】4

【解析】

AB關于直線BC的對稱線段AB,交半圓于D,連接AC、CA,首先構造全等三角形,然后再利用勾股定理和割線定理解答.

解:如圖,∵,且AB10,

AD4,BD6,

AB關于直線BC的對稱線段AB,交半圓于D,連接AC、CA

可得A、CA三點共線,

∵線段AB與線段AB關于直線BC對稱,

ABAB,

ACAC,ADAD4,ABAB10

ACAAADAB,

AC2AC4×1040

AC220,

又∵AC2AB2CB2,

20100CB2,

CB4

故答案是:4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠B120°.點P是對角線AC上一點(不與端點A重合),則線段AP+PD的最小值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019423日是第二十四個世界讀書日.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據圖中信息解答下列問題:

1)求本次比賽獲獎的總人數,并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中二等獎所對應扇形的圓心角度數;

3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加世界讀書日宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,地物線點、、均不為0)的頂點為,與軸的交點為,我們稱以為頂點,對稱軸是軸且過點的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.

1)求拋物線的衍生拋物線和衍生直線的解析式;

2)若一條拋物線的衍生拋物線和衍生直線分別是,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小李經營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經了解,一次性批發(fā)這種水果不得少于,超過時,所有這種水果的批發(fā)單價均為3.圖中折線表示批發(fā)單價(元)與質量的函數關系.

1)求圖中線段所在直線的函數表達式;

2)小李用800元一次可以批發(fā)這種水果的質量是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點DDFBC,交AB的延長線于點F.

(1)求證:DF為⊙O的切線;

(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一商品銷售某種商品,平均每天可售出20件,每件盈利50元.為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經過一段時間銷售,發(fā)現銷售單價每降低1元,平均每天可多售出2件.

1)若每件商品降價2元,則平均每天可售出______件;

2)當每件商品降價多少元時,該商品每天的銷售利潤為1600元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,若b是正數,直線ly=by軸交于點A;直線ay=xby軸交于點B;拋物線Ly=x2+bx的頂點為C,且Lx軸右交點為D

1)若AB=8,求b的值,并求此時L的對稱軸與a的交點坐標;

2)當點Cl下方時,求點Cl距離的最大值;

3)設x00,點(x0y1),(x0,y2),(x0,y3)分別在l,aL上,且y3y1,y2的平均數,求點(x0,0)與點D間的距離;

4)在La所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數的點稱為“美點”,分別直接寫出b=2019b=2019.5時“美點”的個數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形中,,點,分別在邊,上,且垂直.

1)如圖1,求證:;

2)如圖2,平移線段至線段,于點,圖中陰影部分的面積與正方形的面積之比為,求的周長;

3)如圖3,若,將線段繞點順時針旋轉至線段,連接,則線段的最小值為______.

查看答案和解析>>

同步練習冊答案