【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
【答案】
(1)證明:∵DE為直徑,
∴∠DCE=90°,即∠2+∠DCB=90°,
∵∠ACB=90°,即∠1+∠DCB=90°,
∴∠1=∠2,
而∠CAD=∠EAC,
∴△ACD∽△AEC
(2)解:由 = ,設(shè)AC=4k,則BC=3k,
∴BD=BE=3k,
∴AB= =5k,
∴AE=AB+BE=5k+3k=8k,
在Rt△CDE中,tanE= ,
∵△ACD∽△AEC,
∴ = = = ,
∴tanE=
(3)作CH⊥AE于H,如圖,
∵△ACD∽△AEC,
∴ = = ,即 = = ,解得AE=12,CE= CD,
∴DE=AE﹣AC=8,
在Rt△CDE中,∵tanE= = = ,
∴∠E=30°,
∴CD= DE=4,CE=4 ,
在Rt△CHE中,CH= CE=2 ,
∴△ACE的面積= ×12×2 =12 .
【解析】(1)利用圓周角定理得到∠DCE=90°,而∠ACB=90°,則∠1=∠2,加上公共角,則可判斷△ACD∽△AEC;(2)利用由 = 設(shè)AC=4k,BC=3k,由勾股定理計算出AB=5k,則AE=8k,再由△ACD∽△AEC,利用相似比得到 = = ,然后根據(jù)正切的定義可得tanE的值;(3)作CH⊥AE于H,如圖,由△ACD∽△AEC,利用相似比得到AE=12,CE= CD,則DE=AE﹣AC=8,在Rt△CDE中利用三角函數(shù)和特殊角的三角形函數(shù)值得到∠E=30°,則可計算出CD= DE=4,CE=4 ,接著計算出CH,然后根據(jù)三角形面積公式求解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P(a,b),若點P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),
則稱點P′為點P的“k屬派生點”.例如:P(1,4)的“2屬派生點”為P′(1+2×4,2×1+4),即P′(9,6).
(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標(biāo)為 ;
(Ⅱ)若點P的“5屬派生點”P′的坐標(biāo)為(3,﹣9),求點P的坐標(biāo);
(Ⅲ)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△EFG≌△NMH, ∠F與∠M是對應(yīng)角.
(1)寫出相等的線段與相等的角;
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖,在Rt△ABC中,∠ACB=90°∠BAC=30°.
動手操作:(1)若以直角邊AC所在的直線為對稱軸.將Rt△ABC作軸對稱變換,請你在原圖上作出它的對稱圖形:
觀察發(fā)現(xiàn):(2)Rt△ABC和它的對稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是 .
合作交流:(3)根據(jù)上面的圖形,請你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知坐標(biāo)系中點A(2,-1),B(7,-1),C(3,-3).
(1)判定△ABC的形狀;
(2)設(shè)△ABC關(guān)于x軸的對稱圖形是△A1B1C1,若把△A1B1C1的各頂點的橫坐標(biāo)都加2.縱坐標(biāo)不變,則△A1B1C1的位置發(fā)生什么變化?若最終位置是△A2B2C2,求C2點的坐標(biāo);
(3)試問在x軸上是否存在一點P,使PC-PB最大,若存在,求出PC-PB的最大值及P點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)△ABC中,H是高AD和BE的交點,且AD=BD.
(1)請你猜想BH和AC的關(guān)系,并說明理由;
(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結(jié)論還成立嗎?(不必證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com