【題目】如圖,是的邊上異于、一點(diǎn),過點(diǎn)作直線截得的三角形與相似,那么這樣的直線可以作的條數(shù)是( )
A. 1條 B. 2條 C. 3條 D. 4條
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形中,是的平分線,為上一點(diǎn),以為一邊且在下方作等邊三角形,連接.
(1)求證:≌;
(2)求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩點(diǎn)E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)E的坐標(biāo)為(4,0),點(diǎn)F的坐標(biāo)為(0,2),直線11經(jīng)過點(diǎn)E和點(diǎn)F,直線l1與直線l2:y=2x相交于點(diǎn)A.
(1)求直線l1的表達(dá)式;
(2)求點(diǎn)A的坐標(biāo);
(3)求△AOE的面積;
(4)當(dāng)點(diǎn)P是直線l1上的一個(gè)動(dòng)點(diǎn)時(shí),過點(diǎn)P作y軸的平行線PB交直線l2于點(diǎn)B,當(dāng)線段PB=3時(shí),請直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點(diǎn)D、E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題
“互聯(lián)網(wǎng)+”已經(jīng)成為我們生活中不可或缺的一部分,例如OFO.摩拜等互聯(lián)網(wǎng)共享單車就為城市短距離出行難提俱了解決方案,小明每天乘坐公交汽車上學(xué),他家與公交站臺相距1.2km,現(xiàn)在每天租用共享單車到公交站臺所花時(shí)間比過去步行少12min,已知小明騎自行車的平均速度是步行平均速度的2.5倍,求小明步行的平均速度是多少km/h?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,動(dòng)點(diǎn)、分別以、的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動(dòng).
若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)隨點(diǎn)的停止而停止移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問經(jīng)過多長時(shí)間、兩點(diǎn)之間的距離是?
若點(diǎn)沿著移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止時(shí),點(diǎn)隨點(diǎn)的停止而停止移動(dòng),試探求經(jīng)過多長時(shí)間的面積為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形的邊長,,點(diǎn)是邊上的一動(dòng)點(diǎn)不同于、,是邊上的任意一點(diǎn),連接、,過作交于,作交于.設(shè)的長為,則的面積關(guān)于的函數(shù)關(guān)系式是( )
A. B.
C. . D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com