【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;
(3)點(diǎn)D是拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),連接OD、CD,設(shè)△ODC外接圓的圓心為M,當(dāng)sin∠ODC的值最大時(shí),求點(diǎn)M的坐標(biāo).
【答案】(1)拋物線解析式為y=﹣x2+x+3;(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)點(diǎn)M的坐標(biāo)為(﹣1,)或(﹣1,﹣).
【解析】
(1)根據(jù)直線解析式求得點(diǎn)A、B的坐標(biāo),將兩點(diǎn)的坐標(biāo)代入拋物線解析式求解可得;
(2)過(guò)點(diǎn)P作y軸的平行線交AB于點(diǎn)E,據(jù)此知△PEQ∽△OBQ,根據(jù)對(duì)應(yīng)邊成比例得y=PE,由P(m,﹣m2+m+3)、E(m,﹣m+3)得PE=﹣m2+m,結(jié)合y=PE可得函數(shù)解析式,利用二次函數(shù)性質(zhì)得其最大值;
(3)設(shè)CO的垂直平分線與CO交于點(diǎn)N,知點(diǎn)M在CO的垂直平分線上,連接OM、CM、DM,根據(jù)∠ODC=∠CMO=∠OMN、MC=MO=MD知sin∠ODC=sin∠OMN=,當(dāng)MD取最小值時(shí),sin∠ODC最大,據(jù)此進(jìn)一步求解可得.
(1)在y=﹣x+3中,令y=0得x=4,令x=0得y=3,
∴點(diǎn)A(4,0)、B(0,3),
把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:
,
解得:,
∴拋物線解析式為y=﹣x2+x+3;
(2)如圖1,過(guò)點(diǎn)P作y軸的平行線交AB于點(diǎn)E,
則△PEQ∽△OBQ,
∴,
∵=y、OB=3,
∴y=PE,
∵P(m,﹣m2+m+3)、E(m,﹣m+3),
則PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,
∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,
∵0<m<3,
∴當(dāng)m=2時(shí),y最大值=,
∴PQ與OQ的比值的最大值為;
(3)如圖,由拋物線y=﹣x2+x+3易求C(﹣2,0),對(duì)稱(chēng)軸為直線x=1,
∵△ODC的外心為點(diǎn)M,
∴點(diǎn)M在CO的垂直平分線上,
設(shè)CO的垂直平分線與CO交于點(diǎn)N,連接OM、CM、DM,
則∠ODC=∠CMO=∠OMN、MC=MO=MD,
∴sin∠ODC=sin∠OMN=,
又MO=MD,
∴當(dāng)MD取最小值時(shí),sin∠ODC最大,
此時(shí)⊙M與直線x=1相切,MD=2,
MN==,
∴點(diǎn)M(﹣1,﹣),
根據(jù)對(duì)稱(chēng)性,另一點(diǎn)(﹣1,)也符合題意;
綜上所述,點(diǎn)M的坐標(biāo)為(﹣1,)或(﹣1,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),AE⊥EF.有下列結(jié)論:①∠BAE=30°;②射線FE是∠AFC的角平分線;③AE2=ADAF;④AF=AB+CF.其中正確結(jié)論為是______.(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)計(jì)劃成立學(xué)生社團(tuán),要求每一位學(xué)生都選擇一個(gè)社團(tuán)而且只能選擇一個(gè)社團(tuán).為了解學(xué)生對(duì)不同社團(tuán)的選擇意向,隨機(jī)抽取了七年級(jí)部分學(xué)生進(jìn)行“我最喜愛(ài)的社團(tuán)”問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖表.
七年級(jí)部分學(xué)生“我最喜愛(ài)的社團(tuán)”調(diào)查結(jié)果統(tǒng)計(jì)表
社團(tuán)名稱(chēng) | 人數(shù) |
文學(xué)社團(tuán) | 4 |
創(chuàng)客社團(tuán) | 9 |
書(shū)法社團(tuán) | |
繪畫(huà)社團(tuán) | 6 |
體育社團(tuán) | 10 |
音樂(lè)社團(tuán) | 5 |
美食社團(tuán) | |
數(shù)學(xué)社團(tuán) | 2 |
七年級(jí)部分學(xué)生“我最喜愛(ài)的社團(tuán)”調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
請(qǐng)解答下列問(wèn)題:
(1)______,______.
(2)在扇形統(tǒng)計(jì)圖中,“繪畫(huà)社團(tuán)”所對(duì)應(yīng)的扇形圓心角為______度.
(3)該校七年級(jí)共有350名學(xué)生,每個(gè)社團(tuán)人數(shù)不低于30人才可以開(kāi)展.試通過(guò)計(jì)算估計(jì)該校七年級(jí)有哪些社團(tuán)可以開(kāi)展.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某中學(xué)為了了解全校學(xué)生課外閱讀情況,隨機(jī)抽查了200名學(xué)生,統(tǒng)計(jì)他們平均每天課外閱讀時(shí)間(小時(shí)).根據(jù)每天課外閱讀時(shí)間的長(zhǎng)短分為A,B,C.D四類(lèi),下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
200名學(xué)生平均每天課外閱讀時(shí)間統(tǒng)計(jì)表
類(lèi)別 | 時(shí)間t(小時(shí)) | 人數(shù) |
A | t<0.5 | 40 |
B | 0.5≤t<1 | 80 |
C | 1≤t<1.5 | 60 |
D | t≥1.5 | a |
(1)求表格中a的值,并在圖中補(bǔ)全條形統(tǒng)計(jì)圖:
(2)該,F(xiàn)有1800名學(xué)生,請(qǐng)你估計(jì)該校共有多少名學(xué)生課外閱讀時(shí)間不少于1小時(shí)?
(3)請(qǐng)你根據(jù)上述信息對(duì)該校提出相應(yīng)的建議
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徵是我國(guó)古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法(注:圓周率=圓的周長(zhǎng)與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來(lái)無(wú)限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說(shuō):割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣.劉徽計(jì)算圓周率是從正六邊形開(kāi)始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑R.此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為6R,如果將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時(shí),如果按照上述方法計(jì)算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑作圓,分別交于點(diǎn),交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接交線段于點(diǎn).
(1)求證:是圓的切線;
(2)若為的中點(diǎn),求的值;
(3)若,求圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在上學(xué)的路上要經(jīng)過(guò)多個(gè)路口,每個(gè)路口都設(shè)有紅、黃、綠三種信號(hào)燈,假設(shè)在各路口遇到信號(hào)燈是相互獨(dú)立的.
(1).如果有2個(gè)路口,求小明在上學(xué)路上到第二個(gè)路口時(shí)第一次遇到紅燈的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫(xiě)出分析過(guò)程)
(2).如果有n個(gè)路口,則小明在每個(gè)路口都沒(méi)有遇到紅燈的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的頂點(diǎn)為,交軸于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)在第一象限,且在拋物線部分上,交軸于點(diǎn).
(1)求該拋物線的表達(dá)式.
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形…依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長(zhǎng)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com