【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=時,設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(E在F的左邊),觀察M,N,E,F四點坐標,請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?
【答案】(1)拋物線y1=-ax2-ax+1開口向下,或拋物線y2=ax2-ax-1開口向上;拋物線y1=-ax2-ax+1的對稱軸是x=-,或拋物線y2=ax2-ax-1的對稱軸是x=;拋物線y1=-ax2-ax+1經(jīng)過點(0,1),或拋物線y2=ax2-ax-1經(jīng)過點(0,-1);(2)因為MN=3,EF=3,所以MN=EF,見解析;(3)2
【解析】
(1)根據(jù)給出的拋物線的解析式并且結(jié)合函數(shù)的圖象寫出三條不同的結(jié)論即可;
(2)先將a=代入拋物線解析式,分別求得M、N、E、F四點坐標,再根據(jù)四點坐標寫出合理的結(jié)論;
(3)根據(jù)題意求出CD關(guān)于x的解析式,然后求出當(dāng)x=0時,CD的值最大.
解:(1)答案不唯一,只要合理均可.例如:
①拋物線y1=-ax2-ax+1開口向下,
或拋物線y2=ax2-ax-1開口向上;
②拋物線y1=-ax2-ax+1的對稱軸是x= ,
或拋物線y2=ax2-ax-1的對稱軸是x=;
③拋物線y1=-ax2-ax+1經(jīng)過點(0,1),
或拋物線y2=ax2-ax-1經(jīng)過點(0,-1);
④拋物線y1=-ax2-ax+1與y2=ax2-ax-1的形狀相同,但開口方向相反;
⑤拋物線y1=-ax2-ax+1與y2=ax2-ax-1都與x軸有兩個交點;
⑥拋物線y1=-ax2-ax+1經(jīng)過點(-1,1)或拋物線y2=ax2-ax-1經(jīng)過點(1,-1);
(2)當(dāng)a=時,y1=-x2-x+1,令-x2-x+1=0,
解得xM=-2,xN=1.
y2=x2-x-1,令x2-x-1=0,解得xE=-1,xF=2.
①∵xM+xF=0,xN+xE=0,∴點M與點F關(guān)于原點對稱,點N與點E關(guān)于原點對稱;
②∵xM+xF+xN+xE=0,
∴M,N,E,F四點橫坐標的代數(shù)和為0;
③∵MN=3,EF=3,∴MN=EF(或ME=NF).
(3)∵a>0,∴拋物線y1=-ax2-ax+1開口向下,拋物線y2=ax2-ax-1開口向上.
根據(jù)題意,得CD=y1-y2=(-ax2-ax+1)-(ax2-ax-1)=-2ax2+2.
∴當(dāng)x=0時,CD的最大值是2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個自然數(shù)所有數(shù)位上的數(shù)字先平方再求和得到一個新數(shù),叫做第一次運算,再把所得新數(shù)所有數(shù)位上的數(shù)字先平方再求和又將得到一個新數(shù),叫做第二次運算,……如此重復(fù)下去,若最終結(jié)果為1,我們把具有這種特征的自然數(shù)稱為“快樂數(shù)”.例如:
,
,
所以32和70都是“快樂數(shù)”.
(1)寫出最小的兩位“快樂數(shù)”;判斷19是不是“快樂數(shù)”;并說明理由;
(2)若一個三位“快樂數(shù)”經(jīng)過兩次運算后結(jié)果為1,把這個三位“快樂數(shù)”與它的各位上的數(shù)字相加所得的和被8除余數(shù)是2,求出這個“快樂數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E,F(xiàn)分別是△ABC三邊的中點,則下列判斷錯誤的是( )
A. 四邊形AEDF一定是平行四邊形 B. 若AD平分∠A,則四邊形AEDF是正方形
C. 若AD⊥BC,則四邊形AEDF是菱形 D. 若∠A=90°,則四邊形AEDF是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)據(jù)收集)
以下是從某校九年級男生中隨機選出的10名男生,分別測量了他們的身高(單位:cm),數(shù)據(jù)整理如下:
163 171 173 159 161 174 164 166 169 164
(數(shù)據(jù)分析)
確定這十個數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù),并填入表.
眾數(shù) | 中位數(shù) | 平均數(shù) |
|
|
|
(得出結(jié)論)
(1)若用樣本中的統(tǒng)計量估計該校九年級男生平均身高,則這個統(tǒng)計量是 ;(選填“眾數(shù)”或“中位數(shù)”或“平均數(shù)”中一個)
(2)若該校九年級共有男生280名,選用合適的統(tǒng)計量估計,該校九年級男生身高超過平均身高的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠BAC=120°,點D、F分別為AB、AC中點,ED⊥AB,GF⊥AC,若BC=15cm,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OE=DE,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點B、E在反比例函數(shù)y=的圖象上,OA=5,OC=1,則△ODE的面積為( )
A.2.5B.5C.7.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ACDE是美國第二十任總統(tǒng)伽菲爾德驗證勾股定理時用到的一個圖形,a,b,c是Rt△ABC和Rt△BED邊長,易知AE=,這時我們把關(guān)于x的形如的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)判斷方程是否是 “勾系一元二次方程”;并說明理由.
(2)求證:關(guān)于的“勾系一元二次方程” 必有實數(shù)根;
(3)如圖2,已知AB、CD是半徑為5的⊙O的兩條平行弦,AB=2a,CD=2b,a≠b,關(guān)于x的方程是“勾系一元二次方程”,求∠BAC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是直線y=+2與雙曲線y=在第一象限內(nèi)的一個交點,直線y=+2與x軸、y軸的交點分別為A、C,過P作PB⊥x軸,AB+PB=9.
(1)求m的值;
(2)在雙曲線上是否存在一點G,使得△ABG的面積等于△PBC的面積?若存在,求出點G的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com