【題目】如圖,ABC中,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交ACABD,E,連接BD,DE,若∠A=30°,AB=AC,則∠BDE的度數(shù)為( ).

A.52.5°B.60°C.67.5°D.75°

【答案】C

【解析】

根據(jù)AB=AC,利用三角形內(nèi)角和定理求出∠ABC、∠ACB的度數(shù),再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DBC=30°,然后即可求出∠BDE的度數(shù).

解:∵AB=AC
∴∠ABC=ACB,
∵∠A=30°,
∴∠ABC=ACB=180°-30°)=75°,
∵以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,
BE=BD=BC,
∴∠BDC=ACB=75°,
∴∠CBD=180°-75°-75°=30°,
∴∠DBE=75°-30°=45°,
∴∠BED=BDE=180°-45°)=67.5°.
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過(guò)A2,0),B0,-1)和C45)三點(diǎn)。

1)求二次函數(shù)的解析式;

2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

3)在同一坐標(biāo)系中畫(huà)出直線,并寫(xiě)出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)為A(m,2).

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若P是x軸上一點(diǎn), 且滿足PAB的面積是4,

直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開(kāi)關(guān)按鍵(每個(gè)開(kāi)關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖

(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求任意閉合一個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹(shù)狀圖法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DCABE,過(guò)C作⊙O的切線交DB的延長(zhǎng)線于M,若AB=4,ADC=45°,M=75°,則CD的長(zhǎng)為( 。

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,DE平分∠ADB,交ABE,BF平分∠CBD,交CDF.

(1)求證:△ADE≌△CBF;

(2)當(dāng)ADBD滿足什么關(guān)系時(shí),四邊形DEBF是矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),AFDE相交于點(diǎn)G,BFCE相交于點(diǎn)H.

(1)求證:四邊形EHFG是平行四邊形;

(2)①若四邊形EHFG是菱形,則平行四邊形ABCD必須滿足條件   ;

②若四邊形EHFG是矩形,則平行四邊形ABCD必須滿足條件   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Aa,0),B0,b),且a、b滿足.

1)填空:a= ,b=

2)如圖1,將ΔAOB沿x軸翻折得ΔAOCD為線段AB上一動(dòng)點(diǎn),OEODAC于點(diǎn)E,求S四邊形ODAE.

3)如圖2,DAB上一點(diǎn),過(guò)點(diǎn)BBFOD于點(diǎn)G,交x軸于點(diǎn)F,點(diǎn)Hx軸正半軸上一點(diǎn),∠BFO=DHO,求證:AF=OH.

查看答案和解析>>

同步練習(xí)冊(cè)答案