【題目】已知菱形在平面直角坐標系的位置如圖所示,頂點在軸的正半軸上,,,點是對角線上的一個動點,點的坐標為,則最小值為( )
A.B.C.D.
【答案】D
【解析】
連接AC,根據(jù)菱形的性質,點A、C關于直線OB對稱,連接AD與OB相交于點P,根據(jù)軸對稱確定最短路線問題,點P即為所求作的使CP+DP最小的點,根據(jù)菱形的對角線平分一組對角求出∠AOB=30°,然后求出OA的長度,根據(jù)點D的坐標求出OD,再利用勾股定理列式計算求出AD,從而得解.
解:如圖,連接AC,
∵四邊形OABC是菱形,
∴點A、C關于直線OB對稱,
連接AD與OB相交于點P,由軸對稱確定最短路線問題,點P即為所求作的使CP+DP最小的點,CP+DP的最小值為AD的長度,
∵∠COA=60°,
∴∠AOB=∠COA=30°,
∴,
∵點D的坐標為(0,1),
∴OD=1,
由勾股定理得,AD=.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④當﹣1<x<3時,y>0;其中正確的是( )
A.①②B.①②④C.②③④D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△OAB在平面直角坐標系中的位置如圖所示,將△ABO繞原點O逆時針旋轉90°得到△OA1B1.
(1)畫出△OA1B1,并寫出點A1、B1的坐標;
(2)求△ABO繞原點O逆時針旋轉90°掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:將正m邊形(m≥3)不斷向外擴展,每擴展一個正m邊形每條邊上的點的個數(shù)(以下簡稱“點數(shù)”)就增加一個,則n個正m邊形的點數(shù)總共有多少個?
問題探究:為了解決上面的問題,我們將采取將一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:n個正三角形的點數(shù)總共有多少個?
如圖1﹣1,1個正三角形的點數(shù)總共有3個;如圖1﹣2,2個正三角形的點數(shù)總共有6個;如圖1﹣3,3個正三角形的點數(shù)總共有10個;…;n個正三角形的點數(shù)總共有 個.
探究二:n個正四邊形的點數(shù)總共有多少個?
如圖2﹣1,1個正四邊形的點數(shù)總共有4個;如圖2﹣2,2個正四邊形的點數(shù)總共有9個;
如圖2﹣3,連接AC,得到兩個三角形△ABC和△ADC,這兩個三角形相同之處在于,BC邊與CD邊都有相同個數(shù)的點,即4個點,并且與BC、CD平行的邊上依次減少一個點直至頂點A,每個三角形都有10個點,兩個三角形就是2×10個點.因為這兩個三角形在AC上有4個點重合,所以3個正四邊形的點數(shù)總共有2×10﹣4=16(個).
如圖2﹣4,4個正四邊形的點數(shù)總共有 個;……n個正四邊形的點數(shù)總共有 個.
探究三:n個正五邊形的點數(shù)總共有多少個?
類比探究二的方法,求4個正五邊形的點數(shù)總共有多少個?并敘述你的探究過程.
n個正五邊形的點數(shù)總共有 個.
探究四:n個正六邊形的點數(shù)總共有 個.
問題解決:n個正m邊形的點數(shù)總共有 個.
實際應用:若99個正m邊形的點數(shù)總共有39700個,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)的圖象與AB相交于點D.與BC相交于點E,且BD=3,AD=6,△ODE的面積為15,若動點P在x軸上,則PD+PE的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(新洲區(qū)月考)如圖1,AB為半圓O的直徑,C為圓弧上一點,過點C的直線與AB的延長線交于點E,AD⊥CE于點D,AC平分∠DAB.
(1)求證:CE是⊙O的切線.
(2)若AB=6,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;
(3)如圖2,連接OD交AC于點G,若,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A0 A1= A1A2= A2A3…,圖中的螺旋形由一系列直角三角形組成,則第n個三角形的面積為_________,周長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點E是點D關于AB的對稱點,M是AB上的一動點,下列結論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】距離中考體考時間越來越近,年級想了解初三年級1512名學生周末在家體育鍛煉的情況,在初三年級隨機抽取了18名男生和18名女生,對他們周末在家的鍛煉時間進行了調查,并收集得到了以下數(shù)據(jù)(單位:分鐘)
男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105
女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72
統(tǒng)計數(shù)據(jù),并制作了如下統(tǒng)計表:
時間 | ||||
男生 | 2 | 4 | ||
女生 | 1 | 5 | 9 | 3 |
分析數(shù)據(jù):兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)如表所示
極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
男生 | 77 | 66.7 | 70 | 617.3 | |
女生 | 69.7 | 70.5 | 547.2 |
(1)請將上面的表格補充完整: , , , , ;
(2)已知該年級男女生人數(shù)差不多,根據(jù)調查的數(shù)據(jù),估計初三年級周末在家鍛煉的時間在90分鐘以上(不包含90分鐘)的同學約有多少人?
(3)體育老師看了表格數(shù)據(jù)后認為初三年級的女生周末鍛煉做得比男生好,請你結合統(tǒng)計數(shù)據(jù),寫出兩條支持體育老師觀點的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com