【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)yx0)的圖象與AB相交于點D.與BC相交于點E,且BD3,AD6,△ODE的面積為15,若動點Px軸上,則PD+PE的最小值是_____

【答案】

【解析】

根據(jù)所給的三角形面積等于長方形面積減去三個直角三角形的面積,求得BE的坐標,然后E點關于x的對稱得E,則E9,﹣4),連接DE,交x軸于P,此時,PD+PEPD+PEDE最小,利用勾股定理即可求得E點關于x的對稱得E,則E9,﹣4),連接DE,交x軸于P,此時,PD+PEPD+PEDE最。

解:四邊形OCBA是矩形,

ABOCOABC,

BD3AD6,

AB9,

B點的坐標為(9b),

D6b),

DE在反比例函數(shù)的圖象上,

∴6bk,

E9,b),

SODES矩形OCBASAODSOCESBDE9bkk3bb)=15,

∴9b6bb15,

解得:b6,

D6,6),E9,4),

E點關于x的對稱得E,則E9,﹣4),連接DE,交x軸于P,此時,PD+PEPD+PEDE最小,

AB9,BE6+410,

DE

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,△ABC的三個頂點坐標分別為A2,1),B1,4),C3,2).請解答下列問題:

1)畫出△ABC關于y軸對稱的圖形△A1B1C1,并直接寫出C1點的坐標;

2)以原點O為位似中心,位似比為12,在y軸的右側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點的坐標;

3)如果點Da,b)在線段BC上,請直接寫出經(jīng)過(2)的變化后對應點D2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D、E分別在邊ABBC上,AD=BE,CDAE交于F

1)求∠AFD的度數(shù);

2)若BE=m,CE=n

①求的值;(用含有mn的式子表示)

②若=,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要測量一垂直于水平面的建筑物AB的高度,小明從建筑物底端B出發(fā),沿水平方向向右走30米到達點C,又經(jīng)過一段坡角為30°,長為20米的斜坡CD,然后再沿水平方向向右走了50米到達點E(A,BC,DE均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,求建筑物AB的高度.(結果保留根號,參考數(shù)據(jù):sin24°≈,cos24°≈,tan24°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點EAB上,ACDE交于點H,連接BHCE,且∠BCE15°,下列結論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形在平面直角坐標系的位置如圖所示,頂點軸的正半軸上,,,點是對角線上的一個動點,點的坐標為,則最小值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y-x2bxcx軸交于點A(-1,0)、B(3,0),與y軸交于點C

(1)求拋物線的解析式;

(2)D的坐標為(10),點P為第一象限內(nèi)拋物線上的一點,求四邊形BDCP面積的最大值;

(3)如圖②,動點M從點O出發(fā),以每秒2個單位長度的速度向點B運動,到達點B時停止運動,且不與點O、B重合.設運動時間為t秒,過點Mx軸的垂線交拋物線于點N,交線段BC于點Q,連接OQ,是否存在t值,使得△BOQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案