【題目】為響應(yīng)黨的“文化自信”號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機(jī)抽取部分同學(xué)的成績進(jìn)行統(tǒng)計(jì),并繪制成如下的兩個不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息,解答下列問題:
(1)填空:樣本容量為________,________;
(2)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)求扇形的圓心角度數(shù);
(4)如果全校有2000名學(xué)生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計(jì)獲得優(yōu)秀獎的學(xué)生有多少人?
【答案】(1)50,30;(2)見解析;(3);(4)400人.
【解析】
(1)先根據(jù)E等級人數(shù)及其占總?cè)藬?shù)的比例可得總?cè)藬?shù),再用D等級人數(shù)除以總?cè)藬?shù)可得a的值,用總?cè)藬?shù)減去其他各等級人數(shù)求得C等級人數(shù)可補(bǔ)全圖形;
(2)用360°乘以A等級人數(shù)所占比例可得;
(3)用總?cè)藬?shù)乘以樣本中E等級人數(shù)所占比例.
解:(1)∵被調(diào)查的總?cè)藬?shù)為10÷=50(人),
∴D等級人數(shù)所占百分比a%=×100%=30%,即a=30,
C等級人數(shù)為50-(5+7+15+10)=13人,
補(bǔ)全圖形如下:
故答案為:30;
(2)扇形B的圓心角度數(shù)為360°×=50.4°;
(3)估計(jì)獲得優(yōu)秀獎的學(xué)生有2000×=400人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,且D在以AE為直徑的⊙O上.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的一邊BC與⊙O相切于G,DC=6,且對角線BD經(jīng)過圓心O,AD交⊙O于點(diǎn)E,連接BE,BE恰好是⊙O的切線,已知點(diǎn)P在對角線BD上運(yùn)動,若以B、P、G三點(diǎn)構(gòu)成的三角形與△BED相似,則BP=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,C在OB的延長線上,D為⊙O上一點(diǎn),∠BAD=∠BDC.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,且OB=BC,求四邊形AOBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沭陽修遠(yuǎn)中學(xué)初二年級為響應(yīng)政府在新冠肺炎疫情穩(wěn)定之后及時復(fù)工復(fù)產(chǎn)的號召,計(jì)劃開學(xué)之前用3000元購進(jìn)A、B兩種醫(yī)用口罩共1100個,購買A種醫(yī)用口罩與購買B種醫(yī)用口罩的費(fèi)用相同.已知A種醫(yī)用口罩的單價是B種醫(yī)用口罩單價的1.2倍.
(1)求A、B兩種醫(yī)用口罩的單價各是多少?
(2)若初三年級需要購買A、B兩種醫(yī)用口罩共2000個,其中購買A種口罩a個(),設(shè)購買兩種口罩總費(fèi)用為w元,求w與a之間的函數(shù)關(guān)系式,并求出w的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:
先由甲同學(xué)從中隨機(jī)摸出一球,記下球號,并放回?cái)噭,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號。將甲同學(xué)摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.
問:這個游戲公平嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,點(diǎn)E為平面內(nèi)一點(diǎn),BE⊥CE于E.
(1)如圖1,請直接寫出∠ABE和∠DCE之間的數(shù)量關(guān)系;
(2)如圖2,過點(diǎn)E作EF⊥CD,垂足為F,求證:∠CEF=∠ABE;
(3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CD于D,連接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是△ABC的邊AB的延長線上一點(diǎn),點(diǎn)F是邊BC上的一個動點(diǎn)(不與點(diǎn)B重合).以BD、BF為鄰邊作平行四邊形BDEF,又APBE(點(diǎn)P、E在直線AB的同側(cè)),如果,那么△PBC的面積與△ABC面積之比為【 】
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com