7.先化簡,再求值:(5xy-8x2)-2(-6x2+2xy+1)+2,其中x=-1,y=$\frac{1}{2}$.

分析 根據(jù)去括號、合并同類項(xiàng),可化簡整式,根據(jù)代數(shù)式求值,可得答案.

解答 解:原式=5xy-8x2+12x2-4xy-2+2
=xy+4x2,
當(dāng)x=-1,y=$\frac{1}{2}$時(shí),原式=-$\frac{1}{2}$+4=3$\frac{1}{2}$.

點(diǎn)評 本題考查了整式的化簡求值,去括號是解題關(guān)鍵:括號前是負(fù)數(shù)去括號要變號,括號前是正數(shù)去括號不變號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.先化簡再求值.$({\frac{1}{x}+\frac{1}{y}})•\frac{6}{x+y}$,其中$x=\sqrt{3}+1,y=\sqrt{3}-1$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.已知直線y=kx(k≠0)與雙曲線$y=\frac{3}{x}$交于點(diǎn)A(x1,y1),B(x2,y2),則x1y2+x2y1的值為-6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸相交于A,B兩點(diǎn),與y軸相交于C點(diǎn)且OA=OC,對稱軸為x=1,有下列結(jié)論:①2a+b=0;②ac+b+1=0;③0<a<$\frac{1}{2}$;④當(dāng)m≠1時(shí),a+b>am2+bm,其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)A,B分別落在坐標(biāo)軸上,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(-12,0),點(diǎn)B坐標(biāo)為(0,16),動點(diǎn)M從點(diǎn)O出發(fā).沿OA向中點(diǎn)A以每秒2個單位的速度運(yùn)動,同時(shí)動點(diǎn)N從A出發(fā),沿AB向中點(diǎn)B以每秒$\frac{10}{3}$個單位的速度運(yùn)動,當(dāng)一個動點(diǎn)到達(dá)終點(diǎn)時(shí),另一個動點(diǎn)也隨之停止運(yùn)動,設(shè)動點(diǎn)M、N運(yùn)動的時(shí)間為t秒(t>0).
(1)當(dāng)t=3秒時(shí),直接寫出點(diǎn)M的坐標(biāo),并求出經(jīng)過A、M、B三點(diǎn)的拋物線的解析式;
(2)在此運(yùn)動的過程中,△MNA為直角三角形的情況?若存在,請求出t的值.若不存在,請說明理由.
(3)當(dāng)t為何值時(shí),△MNA是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖是一個幾何體的平面展開圖.
(1)請寫出這個立體圖形的名稱;
(2)根據(jù)圖示數(shù)據(jù)(單位:cm),求該幾何體的表面積及體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.有理數(shù)a,b,c在數(shù)軸上對應(yīng)的點(diǎn)的位置如圖所示,化簡|a|+|a+b|+|b-c|+|b+c-a|的結(jié)果是a-3b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.化簡求值:[(xy-1)2-2xy-1]÷(-xy),其中,x=$\frac{3}{2}$,y=-$\frac{1}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.先化簡再求值:-$\frac{1}{2}$a-2(a-$\frac{1}{2}$b2)-($\frac{3}{2}$a-$\frac{1}{3}$b2),其中a=-2,b=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案