【題目】如圖,四邊形中,.動(dòng)點(diǎn)點(diǎn)出發(fā),以的速度向點(diǎn)移動(dòng),設(shè)移動(dòng)的時(shí)間為秒.

1)當(dāng)為何值時(shí),點(diǎn)在線段的垂直平分線上?

2)在(1)的條件下,判斷的位置關(guān)系,并說明理由.

【答案】1)當(dāng)x5時(shí),點(diǎn)E在線段CD的垂直平分線上;(2DECE的位置關(guān)系是DECE,理由見解析

【解析】

1)根據(jù)垂直平分線的性質(zhì)得出DECE,利用勾股定理得出,然后建立方程求解即可

2)根據(jù)第(1)問的結(jié)果,易證△ADE≌△BEC,根據(jù)全等三角形的性質(zhì)有∠ADE=∠CEB,再通過等量代換可得∠AED+CEB90°,進(jìn)而求出∠DEC90°,則可說明DECE

解:(1 ∵點(diǎn)E在線段CD的垂直平分線上,

DECE,

∵∠A=∠B= 90°

解得

∴當(dāng)x5時(shí),點(diǎn)E在線段CD的垂直平分線上

2DECE的位置關(guān)系是DECE;

理由是:當(dāng)x5時(shí),AE2×5cm10cmBC

AB25cm,DA15cm,CB10cm,

BEAD15cm,

在△ADE和△BEC中,

∴△ADE≌△BECSAS),

∴∠ADE=∠CEB,

∵∠A90°,

∴∠ADE+AED90°,

∴∠AED+CEB90°,

∴∠DEC180°-(∠AED+CEB)=90°,

DECE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾不落地,城市更美麗.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生是否隨手丟垃圾這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息,解答下列問題:

(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生是否隨手丟垃圾情況的眾數(shù)是   

(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中經(jīng)常隨手丟垃圾的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長(zhǎng)度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)PPQAB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)PQRABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;

(2)當(dāng)點(diǎn)PBC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(zhǎng)(用含有t的代數(shù)式表示);

(3)當(dāng)點(diǎn)R落在ABCD的外部時(shí),求St的函數(shù)關(guān)系式;

(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,PCD是等腰三角形時(shí)所有的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且ADCE,則∠ADC+BEA=( 。

A.180°B.170°C.160°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn),EFDEBC于點(diǎn)F.

(1)求證:ADEBEF.

(2)設(shè)正方形的邊長(zhǎng)為4,AE=x,BF=y.當(dāng)x取什么值時(shí),y有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一家糖果加工廠,它們要對(duì)一款奶糖進(jìn)行包裝,要求每袋凈含量為100g.現(xiàn)使用甲、乙兩種包裝機(jī)同時(shí)包裝100g的糖果,從中各抽出10袋,測(cè)得實(shí)際質(zhì)量(g)如下:

甲:101,102,99100,98103,10098,10099

乙:100,101,100,98101,97100,98,103,102

1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

2)要想包裝機(jī)包裝奶糖質(zhì)量比較穩(wěn)定,你認(rèn)為選擇哪種包裝機(jī)比較適合?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,E,,DAE上的一點(diǎn),且,連接BD,CD

試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;

如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.

試猜想BDAC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;

你能求出BDAC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DEAB于點(diǎn)E,點(diǎn)FAC上的動(dòng)點(diǎn),BD=DF

1)求證:BE=FC;

2)若∠B=30°,DC=2,此時(shí),求△ACB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案