【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于點E,點F是AC上的動點,BD=DF
(1)求證:BE=FC;
(2)若∠B=30°,DC=2,此時,求△ACB的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,.動點從點出發(fā),以的速度向點移動,設(shè)移動的時間為秒.
(1)當(dāng)為何值時,點在線段的垂直平分線上?
(2)在(1)的條件下,判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A在半徑為20的圓O上,以O(shè)A為一條對角線作矩形OBAC,設(shè)直線BC交圓O于D、E兩點,若OC=12,則線段CE、BD的長度差是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定,三角形任意兩邊的“廣益值”等于第三邊上的中線和這邊一半的平方差.如圖1,在中,是邊上的中線,與的“廣益值”就等于的值,可記為
(1)在中,若,,求的值.
(2)如圖2,在中,,,求,的值.
(3)如圖3,在中,是邊上的中線,,,,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點E是點D關(guān)于AB的對稱點,M是AB上的一動點,下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m是正實數(shù),關(guān)于x的方程2x2﹣mx﹣30=0的兩個根為x1、x2,且5x1+3x2=0,在直角坐標(biāo)系中,拋物線y=mx2+(4+k)x+k與x軸有_____個交點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c.
(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)
①求該拋物線的解析式;
②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.
設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;
(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與(k≠0)的圖象相交于點P(1,-6).
(1)求一次函數(shù)的解析式;
(2)若點Q(m,n)在函數(shù)的圖象上,求2n-6m+9的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com