【題目】如圖,△ACD中,∠ACD=60°,以AC為邊作等腰三角形ABC,AB=AC,E、F分別為邊CD、BC上的點(diǎn),連結(jié)AE、AF、EF,∠BAC=∠EAF=60°
(1)求證:△ABF≌△ACE;
(2)若∠AED=70°,求∠EFC的度數(shù);
(3)請(qǐng)直接指出:當(dāng)F點(diǎn)在BC何處時(shí),AC⊥EF?
【答案】(1)見解析;(2)∠EFC=10°;(3)當(dāng)F點(diǎn)是BC的中點(diǎn)時(shí),AC⊥EF.理由見解析.
【解析】
(1)由等邊三角形性質(zhì)得到∠B=∠ACB=(180°-6°)÷2=60°,所以∠ACD=∠D,又∠BAC-∠CAF=∠EAF-∠CAF,即∠EAC=∠BAF,又AB=AC,所以得到△CAE≌△BAF. (2)由△CAE≌△BAF,得到AE=AF,∠AEC=∠AFB,有∠AEF=∠AFE=(180°-60°)÷2=60°,又因∠AEC+∠AED=∠AFC+∠AFB=180°,得到∠AED=∠AFC=70°,所以∠EFC=∠AFC-∠AFE=70°-60°=10°. (3)△CAE≌△BAF得到AE=AF,CE=BF,又因BF=CF,所以CE=CF,即得到AC⊥EF
(1)證明:∵∠BAC=∠EAF=60°,
∴∠BAC-∠CAF=∠EAF-∠CAF,
∴∠EAC=∠BAF,
∵AB=AC,
∴∠B=∠ACB=(180°-6°)÷2=60°,
∵∠ACD=60°,
∴∠ACD=∠D,
在△CAE和△BAF中,
,
∴△CAE≌△BAF.
(2)解:∵△CAE≌△BAF,
∴AE=AF,∠AEC=∠AFB,
∴∠AEF=∠AFE=(180°-60°)÷2=60°,
∵∠AEC+∠AED=∠AFC+∠AFB=180°,
∴∠AED=∠AFC=70°,
∴∠EFC=∠AFC-∠AFE=70°-60°=10°.
(3)解:當(dāng)F點(diǎn)是BC的中點(diǎn)時(shí),AC⊥EF.
理由:∵△CAE≌△BAF.
∴AE=AF,CE=BF,
∵BF=CF,
∴CE=CF,
∴AC⊥EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)如圖2,過點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價(jià)多少元時(shí),商場日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)O,且OD∥AB,OE∥AC.
(1)試判定△ODE的形狀,并說明你的理由;
(2)線段BD、DE、EC三者有什么關(guān)系?寫出你的判斷過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一幅長為80cm,寬為50cm的矩形風(fēng)景畫的四周鑲一條相同寬度的邊框,制成一幅掛圖,如圖所示,設(shè)邊框的寬為xcm,如果整個(gè)掛圖的面積是5400cm2 ,那么下列方程符合題意的是( )
A. (50-x)(80-x)=5400 B. (50-2x)(80-2x)=5400
C. (50+x)(80+x)=5400 D. (50+2x)(80+2x)=5400
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)光伏發(fā)電惠民生,據(jù)衢州晚報(bào)載,某家庭投資4萬元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30度,其他天氣平均每天可發(fā)電5度.已知某月(按30天計(jì))共發(fā)電550度.
(1)求這個(gè)月晴天的天數(shù);
(2)已知該家庭每月平均用電量為150度,若按每月發(fā)電550度計(jì),至少需要幾年才能收回成本.(不計(jì)其他費(fèi)用,結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),分別以AC,BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.
(1)如圖1,當(dāng)∠DHC=90°時(shí),求的值;
(2)在(1)的條件下,作點(diǎn)C關(guān)于直線DH的對(duì)稱點(diǎn)E,連接AE,BE.求證:CE平分∠AEB.
(3)現(xiàn)將圖1中的△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點(diǎn)C關(guān)于直線DH的對(duì)稱點(diǎn)為E,則(2)中的結(jié)論是否還成立,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD上的動(dòng)點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)D是AB邊上的一點(diǎn),DM⊥AB,且DM=AC,過點(diǎn)M作ME∥BC交AB于點(diǎn)E,
(1)試說明△ABC與△MED全等;
(2)若∠M=35°,求∠B的度數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com