【題目】已知ABC中,∠ACB 90°,∠A30°,點(diǎn)D在直線AC上,CDCB,點(diǎn)E在線段AC上,AE2EC,連接EB、BD,則∠EBD____________

【答案】15°或75°.

【解析】

根據(jù)題意,分情況作出圖形,根據(jù)含30°的直角三角形特點(diǎn)分別進(jìn)行計(jì)算即可.

如圖,點(diǎn)D在線段AC上,設(shè)BC1,∴CD=1

∠ACB 90°,∠A30°,

AB=2AC=,∠CBD=45°

AE2EC

CE=AC=

∴BE==

CBE=30°,

∠EBD=∠CBD-CBE=15°;

如圖,②點(diǎn)D在直線AC上,設(shè)BC1,∴CD=1

∠ACB 90°∠A30°,

AB=2,AC=∠CBD=45°,

AE2EC

CE=AC=

∴BE==

CBE=30°,

∠EBD=∠CBD+CBE=75°

故填:15°或75°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角板的直角頂點(diǎn)放在點(diǎn)O處(∠DOE=90°).

1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;

2)如圖②,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),若OD恰好平分∠BOC,求∠AOE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABCBA=BC,點(diǎn)DAB延長(zhǎng)線上一點(diǎn),DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小淇在說明 直角三角形斜邊上的中線等于斜邊的一半是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CDAB相交于點(diǎn)D,…….請(qǐng)根據(jù)以上思路,完成證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建設(shè)中的大外環(huán)路是我市的一項(xiàng)重點(diǎn)民生工程.某工程公司承建的一段路基工程的施工土方量為120萬立方,原計(jì)劃由公司的甲、乙兩個(gè)工程隊(duì)從公路的兩端同時(shí)相向施工150天完成.由于特殊情況需要,公司抽調(diào)甲隊(duì)外援施工,由乙隊(duì)先單獨(dú)施工40天后甲隊(duì)返回,兩隊(duì)又共同施工了110天,這時(shí)甲乙兩隊(duì)共完成土方量103.2萬立方.

(1)問甲、乙兩隊(duì)原計(jì)劃平均每天的施工土方量分別為多少萬立方?

(2)在抽調(diào)甲隊(duì)外援施工的情況下,為了保證150天完成任務(wù),公司為乙隊(duì)新購(gòu)進(jìn)了一批機(jī)械來提高效率,那么乙隊(duì)平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DE分別是邊AB、BC上的點(diǎn),AECD交于點(diǎn)F,且∠CFE=∠B

1)如圖1,求證:∠AEC=∠CDB;

2)如圖2,過點(diǎn)CCGAC,交AB于點(diǎn)G,CDCB,∠ACD =∠CAB-∠B,求證:ACGC;

3)如圖3,在(2)的條件下,CECDAECG,求線段BC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).

(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)

(2)問:(1)中這樣的直線AC是否唯一?若唯一,請(qǐng)說明理由;若不唯一,請(qǐng)?jiān)趫D中畫出所有這樣的直線AC,并寫出與之對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知AB=AC,BAC和∠ACB的平分線相交于點(diǎn)D,ADC=125°,求∠ACB和∠BAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案