【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d== = =.
根據以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
【答案】(1);(2)見解析;(3)2.
【解析】
(1)根據點P到直線y=kx+b的距離公式直接計算即可;(2)先利用點到直線的距離公式計算出圓心Q到直線y=x+9,然后根據切線的判定方法可判斷⊙Q與直線y=x+9相切;(3)利用兩平行線間的距離定義,在直線y=-2x+4上任意取一點,然后計算這個點到直線y=-2x-6的距離即可.
(1)因為直線y=x-1,其中k=1,b=-1,
所以點P(1,-1)到直線y=x-1的距離為:d=;
(2)⊙Q與直線y=x+9的位置關系為相切.
理由如下:
圓心Q(0,5)到直線y=x+9的距離為:d=,
而⊙O的半徑r為2,即d=r,
所以⊙Q與直線y=x+9相切;
(3)當x=0時,y=-2x+4=4,即點(0,4)在直線y=-2x+4,
因為點(0,4)到直線y=-2x-6的距離為:d=,
因為直線y=-2x+4與y=-2x-6平行,
所以這兩條直線之間的距離為2.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數y=(k≠0)在第一象限內的圖象經過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+ax+3的頂點為P,它分別與x軸的負半軸、正半軸交于點A,B,與y軸正半軸交于點C,連接AC,BC,若tan∠OCB﹣tan∠OCA=.
(1)求a的值;
(2)若過點P的直線l把四邊形ABPC分為兩部分,它們的面積比為1:2,求該直線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若一個函數當自變量在不同范圍內取值時,函數表達式不同,我們稱這樣的函數為分段函數.下面我們參照學習函數的過程與方法,探究分段函數的圖象與性質.列表:
描點:在平面直角坐標系中,以自變量x的取值為橫坐標,以相應的函數值y為縱坐標,描出相應的點,如圖所示.
如圖,在平面直角坐標系中,觀察描出的這些點的分布,作出函數圖象;
研究函數并結合圖象與表格,回答下列問題:
點,,,在函數圖象上,則______,______;填“”,“”或“”
當函數值時,求自變量x的值;
在直線的右側的函數圖象上有兩個不同的點,,且,求的值;
若直線與函數圖象有三個不同的交點,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數圖象與x軸交于點A,與y軸交于點B.
(1)請直接寫出點A坐標______,點B坐標________;
(2)點C是直線AB上一個動點,當△AOC的面積是△BOC的面積的2倍時,求點C的坐標;
(3)點D為直線AB上的一個動點,在平面內找另一個點E,且以O、B、D、E為頂點的四邊形是菱形,請直接寫出滿足條件的菱形的周長_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中放有三張卡片,每張卡片上寫有1個實數,分別為1,2,3.(卡片除了實數不同外,其余均相同)
(1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數是2的概率_______;
(2)先從盒子中隨機抽取一張卡片,將卡片上的實數作為點P的橫坐標,卡片不放回,再隨機抽取一張卡片,將卡片上的實數作為點P的縱坐標,兩次抽取的卡片上的實數分別作為點P的橫縱坐標.請你用列表法或樹狀圖法,求出點P在反比例函數上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件40元,現在的售價為每件60元,每星期可賣出300件.市場調查反映:如果調查價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件.
(1)直接寫出每周售出商品的利潤y(單位:元)與每件降價x(單位:元)之間的函數關系式,直接寫出自變量x的取值范圍;
(2)漲價多少元時,每周售出商品的利潤為2250元;
(3)直接寫出使每周售出商品利潤最大的商品的售價.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過原點的直線y1=mx(m≠0)與反比例函數y2= (k<0)的圖象交于A、B兩點,點A在第二象限,且點A的橫坐標為﹣1,點D在x軸負半軸上,連接AD交反比例函數圖象于另一點E,AC為∠BAD的平分線,過點B作AC的垂線,垂足為C,連接CE,若AD=2DE,△AEC的面積為.
(1)根據圖象回答:當x取何值時,y1<y2;
(2)求△AOD的面積;
(3)若點P的坐標為(m,k),在y軸的軸上是否存在一點M,使得△OMP是直角三角形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com