12.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,點(diǎn)P在BC上移動(dòng),則當(dāng)PA+PD取最小值時(shí),BP長(zhǎng)為(  )
A.1B.2C.2.5D.3

分析 過(guò)點(diǎn)D作DE⊥BC于E,延長(zhǎng)AB到A′,使得A′B=AB,連接A′D交BC于P,此時(shí)PA+PD最小,利用已知條件可證明此時(shí)BP為△AA′D的中位線,進(jìn)而可求出BP的長(zhǎng).

解答 解:過(guò)點(diǎn)D作DE⊥BC于E,
∵AD∥BC,AB⊥BC,
∴四邊形ABED是矩形,
∴BE=AD=4,
∵BC=CD=5,
∴EC=3,
∴AB=DE=4,
延長(zhǎng)AB到A′,使得A′B=AB,連接A′D交BC于P,此時(shí)PA+PD最小,即當(dāng)P在AD的中垂線上,PA+PD取最小值,
∵B為AA′的中點(diǎn),BP∥AD
∴此時(shí)BP為△AA′D的中位線,
∴BP=$\frac{1}{2}$AD=2,
故選B.

點(diǎn)評(píng) 本題考查了軸對(duì)稱-線段最短的問(wèn)題,凡是涉及最短距離的問(wèn)題,一般要考慮線段的性質(zhì)定理,結(jié)合本節(jié)所學(xué)軸對(duì)稱變換來(lái)解決,多數(shù)情況要作點(diǎn)關(guān)于某直線的對(duì)稱點(diǎn),證明BP為△AA′D的中位線是解題本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各組數(shù)中不能作為直角三角形的三邊長(zhǎng)的是( 。
A.$\sqrt{3}$,2,$\sqrt{5}$B.0.7,2.4,2.5C.6,8,10D.9,12,15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.是否存在整數(shù)m,使關(guān)于x的方程5x-2m=3x-6m+2的解滿足-3≤x<2?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖1,在等腰直角△ABC和等腰直角△CDE中,∠ABC,∠CDE是直角,連接BD,點(diǎn)F在AE上且∠FBD=45°,AB=2,CD=1.
(1)求證:AF=FE;
(2)若將等腰直角CDE繞點(diǎn)C旋轉(zhuǎn)一個(gè)a(0°<a≤90°)角,其它條件不變,如圖2,求$\frac{AF}{FE}$的值;
(3)在(2)的條件下,再將等腰直角△CDE沿直線BC右移k個(gè)單位,其它條件不變,如圖3,試求$\frac{AF}{FE}$的值(用含k的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF=$\frac{72}{5}$.其中所有正確結(jié)論的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖1,P為∠MON平分線OC上一點(diǎn),以P為頂點(diǎn)的∠APB兩邊分別與射線OM和ON交于A、B兩點(diǎn),如果∠APB在繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OA•OB=OP2,我們就把∠APB叫做∠MON的關(guān)聯(lián)角.
(1)如圖2,P為∠MON平分線OC上一點(diǎn),過(guò)P作PB⊥ON于B,AP⊥OC于P,那么∠APB是∠MON的關(guān)聯(lián)角(填“是”或“不是”).
(2)①如圖3,如果∠MON=60°,OP=2,∠APB是∠MON的關(guān)聯(lián)角,連接AB,求△AOB的面積和∠APB的度數(shù);
②如果∠MON=α°(0°<α°<90°),OP=m,∠APB是∠MON的關(guān)聯(lián)角,直接用含有α和m的代數(shù)式表示△AOB的面積.
(3)如圖4,點(diǎn)C是函數(shù)y=$\frac{2}{x}$(x>0)圖象上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,直接寫出∠AOB的關(guān)聯(lián)角∠APB的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知四邊形AECF是平行四邊形,點(diǎn)B,D在對(duì)角線EF上,且BE=DF,用向量的加法證明:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知關(guān)于x、y的方程組$\left\{\begin{array}{l}{x-y=3k+1}\\{x+y=3+k}\end{array}\right.$的解滿足$\left\{\begin{array}{l}{x>0}\\{y<0}\end{array}\right.$,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若點(diǎn)P(a,b)在第二象限,則點(diǎn)P(b,a)在第(  )象限.
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案