【題目】為推進“全國億萬學生陽光體育運動”的實施,組織廣大同學開展健康向上的第二課堂活動.我市某中學準備組建球類社團(足球、籃球、羽毛球、乒乓球)、舞蹈社團、健美操社團、武術社團,為了解在校學生對這4個社團活動的喜愛情況,該校隨機抽取部分初中生進行了“你最喜歡哪個社團”調查,依據(jù)相關數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
社團類別 | 人數(shù) | 占總人數(shù)比例 |
球類 | 60 | m |
舞蹈 | 30 | 0.25 |
健美操 | n | 0.15 |
武術 | 12 | 0.1 |
(1)求樣本容量及表格中m、n的值;
(2)請補全統(tǒng)計圖;
(3)被調查的60個喜歡球類同學中有3人最喜歡足球,若該校有3000名學生,請估計該校最喜歡足球的人數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】公司有345臺電腦需要一次性運送到某學校,計劃租用甲、乙兩種貨車共8輛已知每輛甲種貨車一次最多運送電腦45臺、租車費用為400元,每輛乙種貨車一次最多運送電腦30臺、租車費用為280元
(Ⅰ)設租用甲種貨車輛(為非負整數(shù)),試填寫下表.
表一:
租用甲種貨車的數(shù)量/輛 | 3 | 7 | |
租用的甲種貨車最多運送電腦的數(shù)量/臺 | 135 | ||
租用的乙種貨車最多運送電腦的數(shù)量/臺 | 150 |
表二:
租用甲種貨車的數(shù)量/輛 | 3 | 7 | |
租用甲種貨車的費用/元 | 2800 | ||
租用乙種貨車的費用/元 | 280 |
(Ⅱ)給出能完成此項運送任務的最節(jié)省費用的租車方案,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機各摸一個棋子進行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負.
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某教學活動小組選定測量小山上方某信號塔PQ的高度,他們在A處測得信號塔頂端P的仰角為45°,信號塔低端Q的仰角為31°,沿水平地面向前走100米到處,測得信號塔頂端P的仰角為68°.求信號塔PQ的高度.(結果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點的坐標為( 。
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.
(1)求△AOB的周長;
(2)設AQ=t>0,試用含t的代數(shù)式表示點P的坐標;
(3)當動點P,Q在直線l上運動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:
①6a+3b+2c=0;
②當m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.
(1)求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com