【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上:   

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別a、a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

【答案】(1)3.5;(2)見解析;(3)3a2

【解析】

(1)利用ABC所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解;

(2)分別找到A、B、C關(guān)于直線EF的對稱點MNG,順次連接各點即可;

(3)先作出以a、2a為直角邊的三角形的斜邊,再根據(jù)勾股定理和網(wǎng)格結(jié)構(gòu)作出a、a的長度,然后順次連接即可;再根據(jù)三角形所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.

(1)ABC的面積=3×3-×1×2×1×3×2×3=9-1--3=9-5.5=3.5;

故答案為:3.5;

(2)MNG如圖所示:

(3)ABC如圖所示,

ABC的面積=2a·4a-×2a·a-×2a·2a-×4a·a=8a2-a2-2a2-2a2=3a2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是長方形,點A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿O C B A運動,點P的運動時間為t.

(1)當(dāng)t=2時,求直線PD的解析式。

(2)當(dāng)PBC上,OP+PD有最小值時,求點P的坐標(biāo)。

(3)當(dāng)t為何值時,△ODP是腰長為5的等腰三角形?(直接寫出t的值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風(fēng)景線某校數(shù)學(xué)興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖)已知測量儀器CD的高度為1米,則橋塔AB的高度約為(  )(參考數(shù)據(jù):sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)

A.34米
B.38米
C.45米
D.50米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能確定△ABC是直角三角形的條件有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D、E分別是邊AB,BC的中點.若△DBE的周長是6,則△ABC的周長是( 。
A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD , ADBCABBC , AD=1,AB=2,BC=3,PAB邊上的一動點,以PD , PC為邊作平行四邊形PCQD , 則對角線PQ的長的最小值是( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數(shù)y=-
圖象上的一個動點,過點PPQx軸,垂足為Q . 若以點O、PQ為頂點的三角形與OAB相似,則相應(yīng)的點P共有(  ).
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案