【題目】如圖,的半徑為2,圓心的坐標為,點上的任意一點,,且、軸分別交于、兩點,若點、點關(guān)于原點對稱,則的最大值為(

A.7B.14C.6D.15

【答案】B

【解析】

根據(jù)“PAPB,點A與點B關(guān)于原點O對稱”可知AB=2OP,從而確定要使AB取得最大值,則OP需取得最大值,然后過點MMQx軸于點Q,確定OP的最大值即可.

PAPB

∴∠APB=90°

A與點B關(guān)于原點O對稱,

∴AO=BO

∴AB=2OP

若要使AB取得最大值,則OP需取得最大值,

連接OM,交○M于點,當點P位于位置時,OP取得最小值,

過點MMQx軸于點Q,

OQ=3,MQ=4,

∴OM=5

當點P的延長線于○M的交點上時,OP取最大值,

∴OP的最大值為3+2×2=7

∴AB的最大值為7×2=14

故答案選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,經(jīng)順時針旋轉(zhuǎn)后與重合.

旋轉(zhuǎn)中心是點________,旋轉(zhuǎn)了________度;

如果,,求:四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為30°,且斜坡AF的坡比為12.則小明從點A走到點D的過程中,他上升的高度為____米;大樹BC的高度為____米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO的頂點BC在第二象限,點A(3,0),反比例函數(shù)y(k0)圖象經(jīng)過點CAB邊的中點D,若∠Bα,則k的值為(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當市場豬肉的平均價格達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.

1從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?

25月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線交于點,點上,以點為圓心,為半徑的圓恰好經(jīng)過點,分別交,于點,

1)試判斷直線的位置關(guān)系,并說明理由.

2)若,,求陰影部分的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P1(﹣1y1),P22y2),P35,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1y2,y3的大小關(guān)系是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,弦ABCDAB=6,CD=8,則ABCD之間的距離是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象經(jīng)過點(2-5),頂點坐標為(-14),直線l的解析式為y=2x+m.

1)求拋物線的解析式;

2)若拋物線與直線l有兩個公共點,求的取值范圍;

3)若直線l與拋物線只有一個公共點P,求點P的坐標;

4)設(shè)拋物線與軸的交點分別為A、B,求在(3)的條件下△PAB的面積.

查看答案和解析>>

同步練習(xí)冊答案