【題目】已知:在中,,點的中點,點邊上一點.

1)直線垂直于于點于點(如圖1),求證;

2)直線垂直于,垂足為的延長線于點(如圖2).求證:

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)先證出∠ACE=∠CBG,再由ASA證明△ACE≌△CBG,得出對應邊相等即可;
2)先證出∠CEB=∠CMA,再由AAS證明△BCE≌△ACM

1)∵點DAB的中點,ACBC,∠ACB90°,
CDAB,∠ACD=∠BCD45°,∠CAD=∠CBD45°
∴∠CAE=∠BCG
又∵BFCE
∴∠CBG+∠BCF90°
又∠ACE+∠BCF90°,
∴∠ACE=∠CBG
在△AEC和△CGB中,

∴△AEC≌△CGB
AECG
2)∵CHHMCDED,
∴∠CMA+∠MCH90°,∠BEC+∠MCH90°
∴∠CMA=∠BEC
又∵ACBC,∠ACM=∠CBE45°
在△BCE和△CAM

∴△BCE≌△CAMAAS).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線經(jīng)過原點,各邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上.若點A的坐標為(﹣2,﹣3),則k的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關系.

下列說法:

①乙晚出發(fā)1小時;

②乙出發(fā)3小時后追上甲;

③甲的速度是4千米/小時,乙的速度是6千米/小時;

④乙先到達B地.其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知矩形ABCD,連接AC,將△ABC沿AC所在直線翻折,得到△AECAECD于點F

1)求證:DF=EF;

2)如圖2,若∠BAC=30°,點GAC的中點,連接DEEG,求證:四邊形ADEG是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解本校八年級學生課外閱讀的喜好,隨機抽取該校八年級部分學生進行問卷調(diào)查(每人只選一種書籍).圖和圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

(1)這次活動一共調(diào)查了________名學生;

(2)在圖中,漫畫所在扇形圓心角為________度;

(3)補全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績n(分

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

1)該商家購進的第一批襯衫是多少件?

2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某射手在一次射擊中,射中環(huán)、環(huán)、環(huán)的概率分別是、、,那么,這個射手在這次射擊中,射中環(huán)或環(huán)的概率為________;不夠環(huán)的概率為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

同步練習冊答案