【題目】已知:在中,,點是的中點,點是邊上一點.
(1)直線垂直于于點交于點(如圖1),求證;
(2)直線垂直于,垂足為交的延長線于點(如圖2).求證:.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)先證出∠ACE=∠CBG,再由ASA證明△ACE≌△CBG,得出對應邊相等即可;
(2)先證出∠CEB=∠CMA,再由AAS證明△BCE≌△ACM.
(1)∵點D是AB的中點,AC=BC,∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.
∴∠CAE=∠BCG.
又∵BF⊥CE,
∴∠CBG+∠BCF=90°.
又∠ACE+∠BCF=90°,
∴∠ACE=∠CBG.
在△AEC和△CGB中,
∴△AEC≌△CGB.
∴AE=CG.
(2)∵CH⊥HM,CD⊥ED,
∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.
∴∠CMA=∠BEC.
又∵AC=BC,∠ACM=∠CBE=45°,
在△BCE和△CAM中
∴△BCE≌△CAM(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線經(jīng)過原點,各邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上.若點A的坐標為(﹣2,﹣3),則k的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1和l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關系.
下列說法:
①乙晚出發(fā)1小時;
②乙出發(fā)3小時后追上甲;
③甲的速度是4千米/小時,乙的速度是6千米/小時;
④乙先到達B地.其中正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知矩形ABCD,連接AC,將△ABC沿AC所在直線翻折,得到△AEC,AE交CD于點F.
(1)求證:DF=EF;
(2)如圖2,若∠BAC=30°,點G是AC的中點,連接DE,EG,求證:四邊形ADEG是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解本校八年級學生課外閱讀的喜好,隨機抽取該校八年級部分學生進行問卷調(diào)查(每人只選一種書籍).圖和圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動一共調(diào)查了________名學生;
(2)在圖中,“漫畫”所在扇形圓心角為________度;
(3)補全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射手在一次射擊中,射中環(huán)、環(huán)、環(huán)的概率分別是、、,那么,這個射手在這次射擊中,射中環(huán)或環(huán)的概率為________;不夠環(huán)的概率為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com