【題目】閱讀下面材料,解答后面的問題.

解方程:=0.

解:設(shè)y,則原方程可化為y=0,方程兩邊同時乘y,得y2-4=0,解得y1=2,y2=-2.

經(jīng)檢驗,y1=2,y2=-2都是方程y=0的解.

當(dāng)y=2時,=2,解得x=-1;當(dāng)y=-2時,=-2,解得x.

經(jīng)檢驗,x1=-1,x2都是原分式方程的解.所以原分式方程的解為x1=-1,x2.

上述這種解分式方程的方法稱為換元法.

問題:

(1)若在方程=0中,設(shè)y,則原方程可化為________________;

(2)若在方程=0中,設(shè)y,則原方程可化為________________;

(3)模仿上述換元法解方程:-1=0.

【答案】(1);(2);(3)x=-.

【解析】

(1)將所設(shè)的y代入原方程即可;

(2)將所設(shè)的y代入原方程即可;

(3)利用換元法解分式方程,設(shè)y=,將原方程化為y=0,求出y的值并檢驗是否為原方程的解,然后求解x的值即可.

(1)將y=代入原方程,則原方程化為=0;

(2)將y=代入方程,則原方程可化為y=0;

(3)原方程可化為=0,設(shè)y=,則原方程可化為y-=0,

方程兩邊同時乘y,得y2-1=0,解得y1=1,y2=-1,

經(jīng)檢驗,y1=1,y2=-1都是方程y-=0的解;

當(dāng)y=1時,=1,該方程無解;當(dāng)y=-1時,=-1,解得x=-,

經(jīng)檢驗,x=-是原分式方程的解

所以原分式方程的解為x=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合中.

,π,3.14,- ,0,-5.123 45…, ,-.

(1)有理數(shù)集合:{ …};

(2)無理數(shù)集合:{ …};

(3)正實(shí)數(shù)集合:{ …};

(4)負(fù)實(shí)數(shù)集合:{ …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論: ①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時,y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是(

A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小學(xué),我們已經(jīng)初步了解到,長方形的對邊平行且相等,每個角都是90°.如圖,長方形ABCD中,AD=9cmAB=4cmE為邊AD上一動點(diǎn),從點(diǎn)D出發(fā),以1cm/s向終點(diǎn)A運(yùn)動,同時動點(diǎn)P從點(diǎn)B出發(fā),以acm/s向終點(diǎn)C運(yùn)動,運(yùn)動的時間為ts.

1)當(dāng)t=3時,

①求線段CE的長;

②當(dāng)EP平分∠AEC時,求a的值;

2)若a=1,CEPCE為腰的等腰三角形,t的值;

3)連接DP,直接寫出點(diǎn)C與點(diǎn)E關(guān)于DP對稱時的at的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDAC DEFAC FAMD=AGF1=2=35°

1)求∠GFC的度數(shù)

2)求證:DMBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD,請使用無刻度直尺畫圖.
(1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;

(2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點(diǎn)E,交 于點(diǎn)D,連接CD、OD,以下三個結(jié)論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項,其中所有正確結(jié)論的序號是(
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) 的坐標(biāo)為,以 A 為頂點(diǎn)的的兩邊始終與 軸交于 兩點(diǎn)(左面),且

(1)如圖,連接,當(dāng) 時,試說明:

(2)過點(diǎn) 軸,垂足為,當(dāng)時,將沿所在直線翻折,翻折后邊軸于點(diǎn) ,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案