【題目】在△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D為AB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結(jié)論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
【答案】D
【解析】連接CD,
∵在△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D為AB的中點(diǎn),
∴∠B=∠NCD=45°,CD=BD,∠CDB=90°,S△CDB=S△ABC=·AC·BC==4 ,
又∵BM=CN,
∴△DBM≌△DCN,
∴DN=DM,∠CDN=∠DBM,S△CDN=S△DBM,
∴∠DMN=∠CDN+∠CDM=∠CDM+∠BDM=∠CDB=90°,
S四邊形CMDN=S△CDN+S△CDM= S△BDM+S△CDM=S△CBD=4.
∵S△CMN+S△DMN= S四邊形CMDN=4,
∴當(dāng)S△DMN最小時(shí),S△CMN的面積最大,
∴當(dāng)DM⊥BC時(shí),DM=DN=2,此時(shí)S△DMN最小=2,
∴此時(shí),S△CMN的面積最大=4-2=2.
綜上所述,上述四個(gè)結(jié)論全都正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,(1)∠AOB=60°,∠BOC=36°OD平分∠BOC,OE平分∠AOC,則∠EOD=____度;
(2)若∠AOB=90°,OD平分∠BOC,OE平分∠AOC,則∠EOD=__________;
(3)若∠AOB=α,其它條件同(2),則∠EOD=_________________.
類比應(yīng)用:
如圖②,已知線段AB,C是線段AB上任一點(diǎn),D、E分別是AC、CB的中點(diǎn),試猜想DE與AB的數(shù)量關(guān)系為_____________,并寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M與菱形ABCD在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(﹣3,1),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(1,﹣ ),點(diǎn)D在x軸上,且點(diǎn)D在點(diǎn)A的右側(cè).
(1)求菱形ABCD的周長;
(2)若⊙M沿x軸向右以每秒2個(gè)單位長度的速度平移,菱形ABCD沿x軸向左以每秒3個(gè)單位長度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為t(秒),當(dāng)⊙M與AD相切,且切點(diǎn)為AD的中點(diǎn)時(shí),連接AC,求t的值及∠MAC的度數(shù);
(3)在(2)的條件下,當(dāng)點(diǎn)M與AC所在的直線的距離為1時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD是∠AOB的平分線,OE是∠BOC的平分線.
(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度數(shù);
(2)若∠AOC=150°,求∠DOE的度數(shù);
(3)你發(fā)現(xiàn)∠DOE與∠AOC有什么等量關(guān)系?給出結(jié)論并說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)直接寫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E,F(xiàn)分別是線段AB,CB上的動(dòng)點(diǎn),且∠EDF=90°,若ED的長為m,則△BEF的周長是(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠3.
(1)判斷DE與BC的位置關(guān)系,并說明理由:
解:結(jié)論:______________.
理由:∵∠1+∠2=180°,
∴_________________
∴∠ADE=∠3,
∵∠B=∠3
∴______________
∴DE∥BC;
(2)若∠C=65°,求∠DEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC=EC,∠BCE=∠ACD,如果只添加一個(gè)條件,使△ABC ≌ △DEC,則添加的條件不能為( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com