【題目】.如圖 1,AB∥CD,直線 EF 交 AB 于點 E,交 CD 于點 F,點 G 在 CD 上,點 P在直線 EF 左側,且在直線 AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數(shù)量關系為 .
【答案】(1)見解析;(2)40°;(3) ∠EPG=1800-2∠EHG .
【解析】
(1) 過點作∥,則∥,根據(jù)平行線的性質可得, ,從而可證結論成立;
(2)過點作∥,可證,由平分,可證,從而 ,由∥ 可證,從而 ,結合,可求出結論;
(3)由AB∥CD,可證∠BEH=∠EFG,從而∠AEP=180°-2∠EFG①,由三角形外角的性質得,∠EFG=∠EHG+∠HGF=EHG+∠CGP②,由①和②可得,∠AEP+∠CGP=180°-2∠EHG,又由(1)知,∠EPG=∠AEP+∠PGC,從而∠EPG=1800-2∠EHG .
(1) 過點作∥,
∵ ∥ ,
∴∥,
∴ , ,
∴ ∠EPG=∠AEP+∠PGC ;
(2)過點作∥,
1
∴ ,
,
∴ ,
∵平分,
∴ ,
∴.
∵ ,
又∵ ∥ ,
∴ ,
即,
∴ ,
∴ .
∵ ,
∴ ,
(3)∠EPG=1800-2∠EHG .
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點E作EF∥DC,交BC延長線于點F,構造△BEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:BC+DE的值為________
參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點G,AC=BF=DF,求∠AGF的度數(shù)________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個新的三位數(shù),我們稱這個三位數(shù)為M的“友誼數(shù)”,如:168的“友誼數(shù)”為“618”;若從M的百位數(shù)字、十位數(shù)字、個位數(shù)字中任選兩個組成一個新的兩位數(shù),并將得到的所有兩位數(shù)求和,我們稱這個和為M的“團結數(shù)”,如:123的“團結數(shù)”為12+13+21+23+31+32=132.
(1)求證:M與其“友誼數(shù)”的差能被15整除;
(2)若一個三位正整數(shù)N,其百位數(shù)字為2,十位數(shù)字為a、個位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),若N的“團結數(shù)”與N之差為24,求N的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,過對角線BD上任意一點P,作EF∥BC,GH∥AB,下列結論:①圖中共有3個菱形;②△BEP≌△BGP;③四邊形AEPH的面積等于△ABD的面積的一半;④四邊形AEPH的周長等于四邊形GPFC的周長.其中正確的是________.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖所示,某公路一側有A、B兩個送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長時間后這個人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩塊三角板的直角頂點重合.
(1)寫出以點C為頂點的相等的角;
(2)若∠ACB=150°,求∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示.設點A,B,C所對應數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,求∠CDA的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com