【題目】一個三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個新的三位數(shù),我們稱這個三位數(shù)為M友誼數(shù)168友誼數(shù)“618”;若從M的百位數(shù)字、十位數(shù)字、個位數(shù)字中任選兩個組成一個新的兩位數(shù),并將得到的所有兩位數(shù)求和我們稱這個和為M團結數(shù),123團結數(shù)12+13+21+23+31+32=132

1求證M與其友誼數(shù)的差能被15整除;

2若一個三位正整數(shù)N其百位數(shù)字為2,十位數(shù)字為a、個位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),N團結數(shù)N之差為24,N的值

【答案】(1)答案見解析;(2)284或218.

【解析】整體分析:

(1)M100a+10b+c,計算M與其友誼數(shù)的差;(2)N團結數(shù)N之差為24列方程,結合a,b是正整數(shù)求解.

解:(1)由題意可得,

M100a+10b+c,則它的友誼數(shù)為:100b+10a+c,

(100a+10b+c)﹣(100b+10a+c)

=100a+10b+c﹣100b﹣10a﹣c

=100(a﹣b)+10(b﹣a)

=90(a﹣b),

=6(a-b),

M與其友誼數(shù)的差能被15整除;

(2)由題意可得,

N=2×100+10a+b=200+10a+b,

N的團結數(shù)是:10×2+a+10a+2+10×2+b+10×b+2+10a+b+10b+a=22a+22b+44,

22a+22b+44﹣(200+10a+b)=24,

解得, .

N284218.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點AC分別在x軸,y軸上,函數(shù)y=的圖象過點P4,3)和矩形的頂點Bm,n)(0m4).

1)求k的值;

2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點O,E是OD的中點,連接AE并延長交DC于點F,則DF:FC=(
A.1:4
B.1:3
C.1:2
D.1:1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖.在ABC,ADE,BAC=∠DAE=90°AB=AC,AD=AEC,D,E三點在同一條直線上,連接BDBE.以下四個結論

BD=CE;②∠ACE+∠DBC=45°;BDCE④∠BAE+∠DAC=180°

其中正確的有______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,點F為正方形ABCD內(nèi)一點,BFC逆時針旋轉(zhuǎn)后能與BEA重合

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度為 度;

(2)判斷BEF的形狀為 ;

(3)若∠BFC=90°,說明AEBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:

(1)與面B,C相對的面分別是   ;

2)若A=a3+a2b+3B=a2b+a3,C=a31,D=a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E,F分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖 1,ABCD,直線 EF AB 于點 E,交 CD 于點 F,點 G CD 上,點 P在直線 EF 左側(cè),且在直線 AB CD 之間,連接 PE,PG.

(1) 求證: EPG=AEPPGC;

(2) 連接 EG,若 EG 平分∠PEF,AEP+ PGE=110°,PGC=EFC,求∠AEP 的度數(shù).

(3) 如圖 2,若 EF 平分∠PEB,PGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數(shù)量關系為      .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,求∠CDA的度數(shù).

查看答案和解析>>

同步練習冊答案