分析 如圖1,當(dāng)點(diǎn)P在CD上時(shí),由折疊的性質(zhì)得到四邊形PFBE是正方形,EF過點(diǎn)C,根據(jù)勾股定理即可得到結(jié)果;如圖2當(dāng)點(diǎn)P在AD上時(shí),過E作EQ⊥AB于Q,根據(jù)勾股定理得到PB的長(zhǎng),推出△ABP∽△EFQ,列比例式即可得到結(jié)果.
解答 解:如圖1,當(dāng)點(diǎn)P在CD上時(shí),
∵PD=3,CD=AB=7,
∴CP=4,
∵EF垂直平分PB,
∴四邊形PFBE是正方形,EF過點(diǎn)C,
∴EF=4$\sqrt{2}$;
如圖2,當(dāng)點(diǎn)P在AD上時(shí),
過E作EQ⊥AB于Q,
∵PD=3,AD=4,
∴AP=1,
∴PB=$\sqrt{A{B}^{2}+A{P}^{2}}$=5$\sqrt{2}$,
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴$\frac{EF}{PB}$=$\frac{EQ}{AB}$,即$\frac{EF}{5\sqrt{2}}$=$\frac{4}{7}$
解得EF=$\frac{20\sqrt{2}}{7}$.
綜上所述:EF長(zhǎng)為4$\sqrt{2}$或$\frac{20\sqrt{2}}{7}$.
點(diǎn)評(píng) 本題考查了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了矩形的性質(zhì)和勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 百分位 | B. | 個(gè)位 | C. | 千位 | D. | 十萬(wàn)位 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com